Technical Memorandum

February 22, 2022
Project\# 26855

To: \quad Steven Chang and Leigha Schmidt - City of Hayward
From: Michael Sahimi and Damian Stefanakis - Kittelson \& Associates, Inc.
RE: Parcel Group 5 - Additional Bunker Hill Boulevard/Carlos Bee Boulevard Analysis

Kittelson \& Associates (Kittelson) recently prepared a local transportation analysis (LTA) for the Parcel Group 5 (PG 5) project which consists of analysis and recommendations focused on multimodal access and safety, traffic controls, traffic calming, and strategies to reduce project-generated vehicle trips. Due to resident concerns, Kittelson has also prepared this separate memo to analyze the proposed project access point at Bunker Hill Boulevard and Carlos Bee Boulevard (the project includes extending Bunker Hill Boulevard from its current terminus). The purpose of this memo is to provide recommendations on the appropriate access control for the proposed intersection.

This memorandum is organized into the following sections:

- Project Description
- Local Transportation Assessment (LTA) Traffic Operations Analysis
- LTA Sight Distance Analysis
- Traffic Signal Warrants Analysis
- Traffic Control Recommendation and Conceptual Driveway Design
- Traffic Operations Analysis w/ Bunker Hill/Carlos Bee Access Control
- Summary of Findings

PROJECT DESCRIPTION

The Parcel Group 5 Project will consist of up to 74 single-family dwelling units and 8 accessory dwelling units (ADUs). The single-family homes will each have four bedrooms, and the ADUs will be a mix of studios and one-bedroom units. A total of 406 parking spaces will be provided, consisting of 100 on-street spaces, 148 driveway spaces, and 158 garage spaces.

Additional project elements include approximately 10.50 acres of open space to preserve riparian areas, a new segment of the Hayward Foothill Trail, and additional street improvements such as curbs, gutters, sidewalks, on-street parking bulb-outs, utilities, and lighting.

The project site is shown in Figure 1. The proposed site plan is shown in Figure 2.
The proposed project includes extending Bunker Hill Boulevard to Carlos Bee Boulevard to form a new intersection that would provide access to the northern portion of the project site. The PG 5 LTA analyzed this proposed access point as a side-street stop-controlled intersection, with vehicles exiting Bunker Hill Boulevard onto Carlos Bee Boulevard needing to stop.

Figure 1: Project Site

Figure 2: Project Site Plan

SOURCE: MACKAY \& SOMPS
Dated May 12, 2021 ; Recelved May 18, 2021

PG 5 LTA TRAFFIC OPERATIONS ANALYSIS

In the PG 5 LTA, Kittelson analyzed the proposed access point at Bunker Hill Boulevard and Carlos Bee Boulevard as a full access side-street stop-controlled intersection. The traffic operations analysis included a determination of the proportion of project traffic that will use the new access point plus assessments of level of service (LOS) and queuing with project trips added on top of existing weekday morning and evening peak hours. Figure 3 shows the Existing Plus Project AM and PM peak hour volumes at the intersection. Based on project trip distribution developed using the City of Hayward General Plan Update travel demand model, the project traffic anticipated to use the new access point at Bunker Hill Boulevard and Carlos Bee Boulevard is lower than the amount anticipated to use the other two access points at Harder Road and Mission Boulevard. It was assumed that 20 outbound and 8 inbound vehicles would use the access point during the AM peak hour and 13 outbound and 23 inbound vehicles would use it during the PM peak hour.

Figure 3: Existing Plus Project Peak Hour Volumes (Bunker Hill Blvd./Carlos Bee Blvd.)

LOS is used to describe the quality of intersection operations. LOS grades range from A to F, with LOS A representing free-flow conditions and LOS F indicating high levels of congestion. According to City guidelines, the acceptable level of service at an intersection is LOS E. Additional information regarding City methodologies and standards are provided in the PG 5 LTA.

As shown in Table 1, based on the assessment conducted in the PG 5 LTA, it is anticipated that the Bunker Hill Boulevard access point would operate with acceptable LOS during both peak hours as a side-street stop-controlled intersection.

Table 1: Automobile Level of Service, Existing Plus Project Conditions (Bunker Hill Blvd./Carlos Bee Blvd.)

Peak Hour	Delay (sec)	LOS	Acceptable LOS?
AM	16.1	C	Yes
PM	14.9	B	Yes

SOURCE: Kittelson \& Associates, 2022.

Table 2 shows the anticipated $95^{\text {th }}$ percentile queues at the Bunker Hill Boulevard access point. As shown in the table, none of the queues are expected to exceed the available storage.

Table 2: Queves, Existing Plus Project Conditions (Bunker Hill Blvd./Carlos Bee Blvd.)

Peak Hour	Movement		Storage Length	Queue (fi)	Exceed
			(fi)		Storage?
AM	NB	Left	300	<25	No
		Right	70	<25	No
	WB	Left	600	<25	No
PM	NB	Left	300	<25	No
		Right	70	<25	No
	WB	Left	600	<25	No

Source: Kittelson \& Associates, 2022.

PG 5 LTA SIGHT DISTANCE ANALYSIS

The PG 5 LTA included an assessment of sight distance at the proposed access point at the new Bunker Hill Boulevard/Carlos Bee Boulevard intersection. The line of sight for the exiting stop-controlled movements at this location was analyzed to ensure that adequate sight distances are provided for vehicles to see pedestrians, bicycles, and vehicles approaching the driveway. Line of sight was analyzed using standards and methodologies described in the American Association of State Highway and Transportation Officials (AASHTO) Geometric Design of Highways and Streets. AASHTO standards were used to develop departure sight triangles at the intersection that should be unobstructed for vehicles to provide sufficient view of approaching vehicles, bicycles, and pedestrians.

Assuming a passenger car time gap of 8.5 seconds (based on AASHTO) and the posted speed limit of 30 mph along Carlos Bee Boulevard, the intersection sight distances were calculated, and recommended departure sight triangles are shown in Figure 4. As shown in the figure, 375 feet of sight distance is needed to the left (for exiting right-turning vehicles) and to the right (for exiting left-turning vehicles). Obstructions currently consist of trees. Therefore, the PG 5 LTA included a recommendation that when the Bunker Hill Boulevard intersection is being constructed, visual obstructions such as brush and landscaping should be cleared from the sight triangle area as shown in Figure 4 to provide adequate visibility.

Figure 4: Bunker Hill Blvd./Carlos Bee Blvd. Departure Sight Triangles

TRAFFIC SIGNAL WARRANTS ANALYSIS

In response to local resident concerns about the proposed traffic controls, Kittelson evaluated the proposed intersection against traffic signal warrants from the California Manual of Uniform Traffic Control Devices (CA-MUTCD). Traffic signal warrants are standards that provide guidelines in the determination of the need for a traffic signal (warrants studied are highlighted in bold).

The CA-MUTCD states: "An engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location...The investigation for a traffic control signal shall include an analysis of the applicable factors contained in the following traffic signal warrants:

- Warrant 1, Eight-Hour Vehicular Volume
- Warrant 2, Four-Hour Vehicular Volume
- Warrant 3, Peak Hour
- Warrant 4, Pedestrian Volume
- Warrant 5, School Crossing
- Warrant 6, Coordinated Signal System
- Warrant 7, Crash Experience
- Warrant 8, Roadway Network
- Warrant 9, Intersection near a Grade Crossing
...The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal." ${ }^{1}$

This evaluation used available data (peak hour turning movement volumes and crash history) to conduct an analysis with respect to Warrant 3 (Peak Hour) and Warrant 7 (Crash Experience). Additionally, typical assumptions about the distribution of traffic throughout the day, based on peak hour counts, allowed for Warrant 1 (Eight-Hour Vehicular Volume) and Warrant 2 (Four-Hour Vehicular Volume) to be studied. Warrants $4,5,6,8$, and 9 were not applicable to this location and were not studied. ${ }^{2}$

Warrants 1 and 2, the eight-hour and four-hour volume warrants, are computed based on approach geometry (number of lanes) and vehicle volumes. Warrant 3 , the peak hour signal warrant, is a function of approach geometry, volume, and vehicle delay. The CA-MUTCD advises that Warrant 3 "shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or highoccupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time." 3

Based on the available data, the intersection does not meet Warrants 1, 2, or 3 in the AM peak hour or the PM peak hour. Warrant sheets are provided in Attachment 1.

For an intersection to meet Warrant 7 (crash experience), the intersection needs to have observed at least five crashes "of types susceptible to correction by a traffic control signal" within a 12-month period. ${ }^{4}$ Kittelson obtained the ten most recent years of crash data (January 2011 through December 2020) for the proposed access point location as well as the existing Tanglewood/Carlos Bee Boulevard intersection, which is located approximately 100 feet away from the proposed Bunker Hill Boulevard/Carlos Bee Boulevard access point; reported crashes were obtained from the University of California, Berkeley,

[^0]
Attachment XII

Transportation Injury Mapping System (TIMS) database and the California Statewide Integrated Traffic Records System (SWITRS) database. This data is shown in Table 3; based on the reported crash history, the proposed access point location does not meet Warrant 7.

Note that while the Bunker Hill Boulevard/Carlos Bee Boulevard intersection currently does not exist, this crash analysis still includes crashes along the adjacent roadway segment which involve factors and traits that would be faced by vehicles using the proposed access point. In addition, it conservatively includes crashes at the adjacent Tanglewood intersection, since the two locations are linked and may need to be signalized as a single location.

Table 3: Reported Crash History, 2011-2020

Crash Year	Road Users Involved	Fatal	Severe Injury	Visible Injury	Complaint of Pain	Property Damage Only	Total
$\begin{aligned} & 2011- \\ & 2020 \end{aligned}$	Pedestrian Involved	0	0	0	0	0	0
	Bicycle Involved	0	0	0	0	0	0
	Vehicle Only or Vehicle-Fixed Object	0	0	0	5	2	7
	All Reported Crashes	0	0	0	5	2	7
2011	All Reported Crashes	0	0	0	0	0	0
2012	All Reported Crashes	0	0	0	0	0	0
2013	All Reported Crashes	0	0	0	0	0	0
2014	All Reported Crashes	0	0	0	0	0	0
2015	All Reported Crashes	0	0	0	2	0	2
2016	All Reported Crashes	0	0	0	1	1	2
2017	All Reported Crashes	0	0	0	0	0	0
2018	All Reported Crashes	0	0	0	0	0	0
2019	All Reported Crashes	0	0	0	2	1	3
2020	All Reported Crashes	0	0	0	0	0	0

Source: SWITRS, TIMS, Kittelson \& Associates, 2022.

In conclusion, the proposed access point at Bunker Hill Boulevard and Carlos Bee Boulevard does not meet the analyzed traffic signal warrants. As such, a traffic signal is not recommended at this location.

TRAFFIC CONTROL RECOMMENDATION AND CONCEPTUAL DRIVEWAY DESIGN

While the proposed project access point location does not trigger a traffic signal warrant, triggering a warrant is not the sole determinant for an intersection improvement. The City can at its discretion require or not require a signal be installed, based on other factors. Relevant conditions around the access point location are discussed below.

- Visibility: It could be difficult for exiting left-turning drivers waiting at a stop sign to see and anticipate westbound vehicles along Carlos Bee Boulevard due to the curve in the road to the east; this can present additional safety concerns when combined with the grade and downhill speeds (discussed below).
- Grade and downhill speeds: There is a significant grade along Carlos Bee Boulevard, which could result in higher downhill speeds for westbound vehicles. This could cause conflicts for exiting leftturning vehicles at a stop sign that are waiting for a gap in eastbound and westbound vehicles to exit the project site.
- Proximity of Carlos Bee Boulevard/Hayward Boulevard intersection: The proposed Bunker Hill Boulevard/Carlos Bee Boulevard intersection would be approximately 700 feet away from the signalized Carlos Bee Boulevard/Hayward Boulevard intersection, and approximately 500 feet away from that intersection's channelized eastbound right-turn. It is not recommended to install a traffic signal in such close proximity.
- Proximity of future Parcel Group 6 intersection: The proposed Bunker Hill Boulevard/Carlos Bee Boulevard intersection would be approximately 950 feet away from the proposed signalized PG 6 access point. It is not recommended to install another traffic signal in such close proximity.
- Proximity of Tanglewood/Carlos Bee Boulevard intersection: Tanglewood is located approximately 100 feet west of the proposed project access point and consists of a full-access side-street stopcontrolled intersection.
- It is not recommended to signalize the Bunker Hill Boulevard intersection with the unsignalized full-access Tanglewood intersection in such close proximity.
- It may be infeasible to align Bunker Hill Boulevard with Tanglewood in order to construct a standard four-legged signalized intersection.
- Installing a traffic signal would require an offset signalized intersection that would control Bunker Hill Boulevard and Tanglewood with a single traffic signal. However, signalizing access to and from the City View Apartments via Tanglewood may face hurdles related to public/resident support, cost, and fair share contributions.
- Implementing the Bunker Hill Boulevard access point as full-access side-street stopcontrolled could result in conflicts in the two-way left-turn lane for vehicles entering and leaving both sites due to the close proximity.
- Implementing the Bunker Hill Boulevard access point as right-in-right-out with a median would conflict with exiting vehicles from Tanglewood.

Based on these conditions, the recommendation for the City is to implement limited access at the Bunker Hill Boulevard/Carlos Bee Boulevard access point, allowing inbound left-turns and right-turns but restricting exiting vehicles to right-turn only. With this approach, the City can address potential safety concerns for exiting left-turning vehicles while still allowing full access for vehicles entering from the east or from the west. Drivers that want to exit the project site and travel west along Carlos Bee Boulevard towards Mission Boulevard would need to make a right turn from Bunker Hill Boulevard followed by a U-turn at the adjacent Carlos Bee Boulevard/Hayward Boulevard intersection or another location upstream to continue westbound along Carlos Bee Boulevard. This would add approximately a quarter mile of additional travel for project traffic making the U-turn at the Carlos Bee Boulevard/Hayward Boulevard intersection.

Potential conflicts between eastbound left-turning vehicles exiting Tanglewood onto Carlos Bee Boulevard and PG 5 trips turning westbound from Carlos Bee Boulevard onto Bunker Hill Boulevard, both using the twoway left-turn lane, are not anticipated. This is because there would be approximately 140 feet of storage available between Tanglewood and the new intersection, which is anticipated to be sufficient for vehicles exiting Tanglewood eastbound onto Carlos Bee Boulevard.

A conceptual layout is shown in Figure 5. As shown in the figure, exiting vehicles should be stop-controlled and restricted to right-turns only with a channelized right-turn lane that is physically separated by the inbound lane with a raised median. The channelization would orient vehicles to exit with a right turn into the eastbound direction and prevent a left-turn. The raised median should be mountable to ensure emergency vehicles can freely enter and exit Bunker Hill Boulevard. The inclusion of a channelized right-turn exit lane would require widening Bunker Hill Boulevard at Carlos Bee Boulevard. In addition, since there is a striped shoulder lane on the south side of Carlos Bee Boulevard, a merge lane should be included so that vehicles can merge onto the thru-lanes in advance of the eastbound right-turn lane at the adjacent Carlos Bee Boulevard/Hayward Boulevard intersection. There is also sufficient space to include an inbound eastbound right-turn lane at the access point, to further aid visibility and safety.

As shown in the figure, a merge is recommended instead aligning the channelized right-turn with the third eastbound lane along Carlos Bee Boulevard. This is due to three reasons:

- To avoid extending an additional obstruction (the curbed channelization) into the road.
- To prevent the loss of the taper for eastbound cars to gradually enter the third through/right lane.
- To avoid weaving movements as cars enter and exit the third eastbound lane.

Figure 5: Bunker Hill Blvd./Carlos Bee Blvd. Conceptual Layout

TRAFFIC OPERATIONS ANALYSIS W/ BUNKER HILL/CARLOS BEE ACCESS CONTROL

LOS and queuing at the project access point were reassessed given the recommended changes. In addition, due to the additional U-turns at the intersection of Carlos Bee Boulevard and Hayward Boulevard, LOS and queuing at that intersection were also reassessed. The updated LOS and queuing information is provided in Tables 4 and 5. As shown in Table 4, both intersections would operate with acceptable LOS. Additional delay added to the Carlos Bee Boulevard and Hayward Boulevard intersection associated with project U-turns would be minimal.

Table 4: Updated Automobile Level of Service

Intersection	Peak Hour	Delay (sec)	LOS	Acceptable Los?
Bunker Hill Blvd./	AM	11.9	B	Yes
Carlos Bee Blvd	PM	11.4	B	Yes
Carlos Bee Blvd./	AM	32.7	C	Yes
Hayward Blva.	PM	29.7	C	Yes

Source: Kittelson \& Associates, 2022.

Table 5 shows the queues at both intersections, updated to reflect the recommended changes to the Bunker Hill Boulevard access point. As shown in the table, queues at the Bunker Hill Boulevard access point would continue to remain below the available storage. At the Carlos Bee Boulevard/Hayward Boulevard intersection, the westbound left queue length would exceed the length of the turn pocket during the PM peak hour. However, the queue does not increase as a result of project trips and would exceed the turn pocket lane under no project conditions. In addition, while the left-turn pocket is approximately 185 feet long, vehicles can also use the two-way left-turn lane which runs for the entirety of the block.

Table 5: Updated Queves

Intersection	Peak Hour	Movement		Storage Length (fi)	Queve (t)	Exceed Słorage?
Bunker Hill Blvd./ Carlos Bee Blvd	AM	NB	Right	300	<25	No
		WB	Left	600	<25	No
	PM	NB	Right	300	<25	No
		WB	Left	600	<25	No
Carlos Bee Blvd./ Hayward Blvd.	AM	NB	Left	530	46	No
			Thru/Right	530	33	No
		SB	Left/Thru/Right	60	29	No
		EB	Left	80	31	No
			Thru	600	142	No
			Right	185	<25	No
		WB	Left	285	426	Yes
			Thru/Right	1,440	325	No
	PM	NB	Left	530	253	No
			Thru/Right	530	95	No
		SB	Left/Thru/Right	60	25	No
		EB	Left	80	31	No
			Thru	625	157	No
			Right	185	<25	No
		WB	Left	285	174	No
			Thru/Right	1,440	117	No

Source: Kittelson \& Associates, 2022.

Attachment XII

Page 12
Parcel Group 5 - Additional Bunker Hill Boulevard/Carlos Bee Boulevard Analysis

In addition, an AutoTurn template was prepared to determine if passenger vehicles exiting from Bunker Hill Boulevard can make a U-turn at the Carlos Bee Boulevard/Hayward Boulevard intersection to travel westbound towards Mission Boulevard; the AutoTurn template is provided as Attachment 3 to this memo. As shown in the attachment, it is possible for a full-size passenger vehicle to complete a U-turn movement to continue westbound; a U-turn can be made if the vehicle utilizes the extra width within the intersection, since the existing curb limits a U-turn. Relatively few project trips are expected to conduct this maneuver, based on the project trip distribution (15 in the AM peak hour and 10 in the PM peak hour). It is possible that some vehicles might make their U-turn maneuver elsewhere by utilizing the two-way left-turn lane west of the Carlos Bee Boulevard/Hayward Boulevard intersection or by circling back at intersections further downstream and to the east.

SUMMARY OF FINDINGS

The following summarizes the findings based on the analysis Kittelson conducted related to the proposed PG 5 access point at Bunker Hill Boulevard and Carlos Bee Boulevard.

- The proposed access point does not meet eight-hour vehicular volume (Warrant 1), four-hour vehicular volume (Warrant 2), peak hour (Warrant 3), or crash experience (Warrant 7) traffic signal warrants. As such, a traffic signal is not recommended.
- Based on a review of conditions at the proposed access point such as visibility, grade and downhill speeds, and the proximity to other intersections, the recommendation for the City is to implement limited access at the Bunker Hill Boulevard/Carlos Bee Boulevard access point, allowing inbound left-turns and right-turns but restricting exiting vehicles to right-turn only. With this approach, the City can address potential safety concerns for exiting left-turning vehicles while still allowing full access for vehicles entering from the east or from the west. Potential conflicts between eastbound leftturning vehicles exiting Tanglewood onto Carlos Bee Boulevard and PG 5 trips turning westbound from Carlos Bee Boulevard onto Bunker Hill Boulevard, both using the two-way left-turn lane, are not anticipated due to the 140 feet of available storage. Drivers that want to exit the project site and travel west along Carlos Bee Boulevard towards Mission Boulevard would need to make a right turn from Bunker Hill Boulevard followed by a U-turn at the adjacent Carlos Bee Boulevard/Hayward Boulevard intersection to continue westbound along Carlos Bee Boulevard. The attached AutoTurn template shows that this U-turn maneuver is achievable by passenger vehicles; it is possible that some vehicles might make their U-turn maneuver by utilizing the two-way left-turn lane west of the intersection or by circling back at intersections further downstream/east.
- A conceptual layout of the access point was prepared, which shows that exiting vehicles should be stop-controlled and restricted to right-turns only with a channelized right-turn lane that is physically separated by the inbound lane with a raised median. The channelization would orient vehicles to exit with a right turn into the eastbound direction and prevent a left-turn. The raised median should be mountable to ensure emergency vehicles can freely enter and exit Bunker Hill Boulevard. The inclusion of a channelized right-turn exit lane would require widening Bunker Hill Boulevard at Carlos Bee Boulevard. In addition, since there is a striped shoulder lane on the south side of Carlos Bee Boulevard, a merge lane should be included so that vehicles can merge onto the thru-lanes in advance of the eastbound right-turn lane at the adjacent Carlos Bee Boulevard/Hayward Boulevard intersection (aligning the channelized right-turn with the third eastbound lane along Carlos Bee Boulevard is not recommended). There is also sufficient space to include an inbound eastbound right-turn lane at the access point, to further aid visibility and safety.
- This recommended change to the Bunker Hill access point traffic control would not negatively affect traffic operations at that intersection nor at the intersection of Carlos Bee Boulevard/Hayward Boulevard.
- The change would add approximately a quarter mile of additional travel for project traffic making the U-turn at the Carlos Bee Boulevard/Hayward Boulevard intersection.

ATTACHMENTS

Attachment 1 - Traffic Signal Warrant Sheets
Attachment 2 - Updated Existing Plus Project Level of Service and Queuing Worksheets Attachment 3 - U-Turn at Intersection of Carlos Bee Blvd. and Hayward Blvd.

Attachment 1 - Traffic Signal Warrant Sheets

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	26151
Project Name:	Hayward Parcel Group 5
Analyst:	MZS
Date:	1/20/2022
File:	$\mathrm{H}: \ 26 \backslash 26151$ - - Parcel b Local Iransportation
	Analysis\Analysis\Access Point Additional
Intersection:	Analvsis\warrants\neak hour\IExistingPP AM.xlsmlWar Bunker Hill Blvd. \& Carlos Bee Blvd.
Scenario:	Existing Plus Project AM

Warrant Summary			
Warrant	Name	Analyzed?	Met?
$\# 1$	Eight-Hour Vehicular Volume	Yes	No
$\# 2$	Four-Hour Vehicular volume	Yes	No
$\# 3$	Peak Hour	Yes	No
$\# 4$	Pedestrian Volume	No	-
$\# 5$	School Crossing	No	-
$\# 6$	Coordinated Signal System	No	-
$\# 7$	Crash Experience	Yes	No
$\# 8$	Roadway Network	No	-
$\# 9$	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Begin	End	EB	WB	NB
7:45 AM $8: 45$ AM	857	904	20	SB
2nd Highest Hour	811	856	16	0
3rd Highest Hour	800	844	15	0
4th Highest Hour	766	808	13	0
5th Highest Hour	754	796	12	0
6th Highest Hour	754	796	11	0
7th Highest Hour	720	759	11	0
8th Highest Hour	708	747	10	0
9th Highest Hour	686	723	10	0
10th Highest Hour	640	675	10	0
11th Highest Hour	617	651	9	0
12th Highest Hour	606	639	9	0
13th Highest Hour	583	615	7	0
14th Highest Hour	503	530	7	0
15th Highest Hour	400	422	7	0
16th Highest Hour	377	398	6	0
17th Highest Hour	263	277	4	0
18th Highest Hour	217	229	4	0
19th Highest Hour	114	121	1	0
20th Highest Hour	80	84	1	0
21st Highest Hour	69	72	1	0
22nd Highest Hour	46	48	0	0
23rd Highest Hour	23	24	0	0
24th Highest Hour	23	24	0	0

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	2
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	66%
Minor Street: 8 8th-Highest Hour / Peak Hour	52%

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	26151
Project Name:	Hayward Parcel Group 5
Analyst:	MZS
Date:	1/20/2022
File:	H:\26\<6151-Parcel b Local Iransportation
	Analysis\Analysis \backslash Access Point Additional
Intersection:	Analvsis\warrants\neak hourl\ExistingPP PM.xlsmIWar
Scenario:	Exiser Hill Blvd. \& Carlos Bee Blvd.

Warrant Summary			
Warrant	Name	Analyzed?	Met?
$\# 1$	Eight-Hour Vehicular Volume	Yes	No
$\# 2$	Four-Hour Vehicular volume	Yes	No
$\# 3$	Peak Hour	Yes	No
$\# 4$	Pedestrian Volume	No	-
$\# 5$	School Crossing	No	-
$\# 6$	Coordinated Signal System	No	-
$\# 7$	Crash Experience	Yes	No
$\# 8$	Roadway Network	No	-
$\# 9$	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Hour		Major Street		Minor Street	
Begin	End	WB	NB	SB	
5:00 PM	799	687	13	0	
2nd Highest Hour	756	650	10	0	
3rd Highest Hour	746	641	10	0	
4th Highest Hour	714	614	9	0	
5th Highest Hour	703	605	8	0	
6th Highest Hour	703	605	7	0	
7th Highest Hour	671	577	7	0	
8th Highest Hour	661	568	7	0	
9th Highest Hour	639	550	7	0	
10th Highest Hour	597	513	7	0	
11th Highest Hour	575	495	6	0	
12th Highest Hour	565	485	6	0	
13th Highest Hour	543	467	5	0	
14th Highest Hour	469	403	4	0	
15th Highest Hour	373	321	4	0	
16th Highest Hour	352	302	4	0	
17th Highest Hour	245	211	2	0	
18th Highest Hour	202	174	2	0	
19th Highest Hour	107	92	1	0	
20th Highest Hour	75	64	1	0	
21st Highest Hour	64	55	0	0	
22nd Highest Hour	43	37	0	0	
23rd Highest Hour	21	18	0	0	
24th Highest Hour	21	18	0	0	

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	2
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	66%
Minor Street: 8 8th-Highest Hour / Peak Hour	52%

Attachment 2 - Updated Existing Plus Project Level of Service and Queuing Worksheets

91：Bunker Hill Blvd．\＆Carlos Bee Blvd．

Intersection						
Int Delay，s／veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	$\mathbf{1}$	个中		$\mathbf{7}$
Traffic Vol，veh／h	851	6	2	917	0	20
Future Vol，veh／h	851	6	2	917	0	20
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	150	-	-	0
Veh in Median Storage，\＃	0	-	-	0	2	-
Grade，\％	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	925	7	2	997	0	22

Major／Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	932	0	－	463
Stage 1	－	－	－	－	－	－
Stage 2	－	－	－	－	－	－
Critical Hdwy	－	－	4.14	－	－	6.94
Critical Hdwy Stg 1	－	－	－	－	－	－
Critical Hdwy Stg 2	－	－	－	－	－	－
Follow－up Hdwy	－	－	2.22	－	－	3.32
Pot Cap－1 Maneuver	－	－	730	－	0	546
Stage 1	－	－	－	－	0	－
Stage 2	－	－	－	－	0	－
Platoon blocked，\％	－	－		－		
Mov Cap－1 Maneuver	－	－	730	－	－	546
Mov Cap－2 Maneuver	－	－	－	－	－	－
Stage 1	－	－	－	－	－	－
Stage 2	－	－	－	－	－	－
Approach	EB		WB		NB	
HCM Control Delay，s	0		0		11.9	
HCM LOS					B	
Minor Lane／Major Mvmt		NBLn1	EBT	EBR	R WBL	WBT
Capacity（veh／h）		546	－	－	730	－
HCM Lane V／C Ratio		0.04	－	－	0.003	－
HCM Control Delay（s）		11.9	－	－	9.9	－
HCM Lane LOS		B	－	－	A	－
HCM 95th \％tile Q（veh）		0.1	－	－	0	－

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

6: Carlos Bee Blvd. \& Hayward Blvd.

	\rangle	\rightarrow	*	7	\checkmark	4	\uparrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	17	550	445	430	1002	44	75	18
v / c Ratio	0.16	0.62	0.28	0.87	0.60	0.09	0.15	0.16
Control Delay	45.1	35.9	0.4	51.5	20.5	23.4	8.4	39.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.1	35.9	0.4	51.5	20.5	23.4	8.4	39.7
Queue Length 50th (tt)	8	91	0	196	156	14	2	8
Queue Length 95th (ft)	31	142	0	\#426	325	46	33	29
Internal Link Dist (ft)		851			575		459	181
Turn Bay Length (ft)	80		165	290				
Base Capacity (vph)	107	1095	1615	492	1666	494	503	306
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.50	0.28	0.87	0.60	0.09	0.15	0.06
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.								

91: Bunker Hill Blvd. \& Carlos Bee Blvd.

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个4	$\mathbf{7}$	$\mathbf{1}$	个4		$\mathbf{7}$
Traffic Vol, veh/h	781	18	5	692	0	13
Future Vol, veh/h	781	18	5	692	0	13
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	150	-	-	0
Veh in Median Storage, \#	0	-	-	0	2	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	849	20	5	752	0	14

6: Carlos Bee Blvd. \& Hayward Blvd.

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

6: Carlos Bee Blvd. \& Hayward Blvd.

	\rangle	\rightarrow	\%	7	\checkmark	4	\uparrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	20	676	225	209	393	348	498	20
v / c Ratio	0.16	0.64	0.14	0.67	0.28	0.56	0.59	0.15
Control Delay	39.7	31.0	0.2	41.3	17.6	24.9	7.0	27.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.7	31.0	0.2	41.3	17.6	24.9	7.0	27.6
Queue Length 50th (tt)	8	96	0	84	48	122	14	4
Queue Length 95th (ft)	31	157	0	\#174	117	253	95	25
Internal Link Dist (ft)		783			575		459	181
Turn Bay Length (ft)	80		165	290				
Base Capacity (vph)	124	1175	1577	368	1436	625	844	354
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.58	0.14	0.57	0.27	0.56	0.59	0.06
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.								

Attachment 3 - U-Turn at Intersection of Carlos Bee Blvd. and Hayward Blvd.

Kittelson \& Associates, Inc.

[^0]: ${ }^{1}$ CA-MUTCD, Section 4C. 01
 2 Warrants 4 and 5 are applicable for crossings without existing traffic control (i.e., STOP sign or traffic signal) to assist pedestrian crossings. Warrant 6 pertains to intersections that are part of a coordinated signal system, which this location is not. Warrants 8 and 9 are applicable to contexts not matching this site's context.
 ${ }^{3}$ CA-MUTCD, Section 4C.04, 02
 ${ }^{4}$ CA-MUTCD, Section 4C.08, 02B

