Attachment XI

PARCEL GROUP 3 ENTITLEMENTS LOCAL TRANSPORTATION ANALYSIS

HAYWARD, CA

June 1, 2021

Inside front cover
Page Intentionally blank

Parcel Group 3 Entitlements Local Transportation Analysis (Draft Report)

Hayward, CA

Prepared for: LSA Associates, Inc. 2215 Fifth Street Berkeley, CA 94710

Prepared by:
Kittelson \& Associates, Inc.
155 Grand Avenue, Suite 505
Oakland, CA 94612
510.839.1742

Project Manager: Michael Sahimi Senior Planner

Project Principal: Damian Stefanakis Principal Planner

Project Number 24641 City of Hayward Planning Application \#202001594

June 1, 2021

Page Intentionally blank

LIST OF FIGURES

Figure 1: Study Area and Project Site 7
Figure 2: Intersection Study Locations 10
Figure 3: Existing Traffic Signals 14
Figure 4: Existing Transit Network 16
Figure 5: Existing Crosswalk Ramps 19
Figure 6: Existing Bikeway Network 21
Figure 7: Existing Automobile Peak Hour Volumes 23
Figure 8: Project Site Plan 31
Figure 9: Project Trip Distribution Percentages 35
Figure 10: Project-Only Trips 36
Figure 11: Charter School Project-Only Trips (PM Peak Hour of Generator) 37
Figure 12: Existing Plus Project Turning Movement Forecasts 42
Figure 13: On-Site Pedestrian Facilities 47
Figure 14: Student Pick-Up and Drop-Off Plan 52
Figure 15: Fire Truck Access Plan 58
Figure 16: Waste Management Access Plan 59
LIST OF TABLES
Table 1: Level of Service Standards 8
Table 2: Study Intersections 9
Table 3: Existing AC Transit Weekday Service 15
Table 4: Pedestrian Facility Conditions 17
Table 5: Pedestrian and Bicycle Volumes (Weekday AM Peak Hour) 24
Table 6: Pedestrian and Bicycle Volumes (Weekday PM Peak Hour) 25
Table 7: Automobile Level of Service, Existing Conditions 27
Table 8: Queue Lengths in Excess of Capacity, Existing Conditions 28
Table 9: Enrollment and Staffing Projections 30
Table 10: Project Trip Generation Estimate 33
Table 11: Charter Elementary School Trip Generation Estimate (PM Peak Hour of Generator) 34
Table 12: Automobile Level of Service, Existing Plus Project Conditions 39
Table 13: Queue Lengths in Excess of Capacity, Existing Plus Project Conditions 40
Table 14: Anticipated Project Trip Contribution (Hancock Street and E. 16th Street) 54

APPENDICES

Appendix 1 - Traffic Counts and COVID-19 Adjustments
Appendix 2 - Existing Level of Service, Queuing, and Peak Hour Traffic Signal Warrants Worksheets
Appendix 3 - Intersection Queuing Analysis Spreadsheet
Appendix 4 - Existing Plus Project Level of Service, Queuing, and Peak Hour Traffic Signal Warrants Worksheets

Parcel Group 3 Entitlements Local Transportation Analysis June 1, 2021

This page intentionally left blank

Section 1 - Executive Summary

EXECUTIVE SUMMARY

This report presents the findings and conclusions of the local transportation analysis conducted by Kittelson \& Associates for the proposed Parcel Group 3 (PG 3) project (the Project) located in Hayward, California. This report documents the non-California Environmental Quality Act (CEQA) local transportation analysis conducted for this project and complements the CEQA transportation impact analysis documented in the VMT Impact Assessment Memorandum.

PG 3 is located at the northeastern corner of Mission Boulevard and Tennyson Road in Hayward. The proposed project consists of 176 affordable rental apartments (38 studios, 47 one-bedroom, 44 twobedroom, 47 three-bedroom) and a charter school serving 384 elementary students. Primary access to the project site for the school portion will be provided via Tennyson Road, with secondary access for the residential portion via two driveways on $16^{\text {th }}$ Street.

Summary of Findings and Recommendations

The VMT Impact Assessment Memorandum previously determined that the project can be screened out of a detailed vehicle miles traveled (VMT) analysis under the City's Senate Bill 743-consistent VMT criteria. Therefore, it was determined that the project would have a less-than-significant VMT impact under CEQA. No mitigation measures were identified.

Non-CEQA recommendations have been made in this report to address multimodal transportation conditions and to be incorporated as part of this project.

To address local bus transit accessibility, the property owner should:

- Coordinate with AC Transit to improve user amenities at the two AC Transit bus stops at the intersection of Mission Boulevard and Hancock Street.

To address pedestrian conditions and accessibility, potential pedestrian-oriented treatments that could be considered as part of design review and conditions of approval include:

- Ensure that the project driveways are designed for pedestrian visibility safety (sidewalks clearly delineated, improved visibility by minimizing bushes and large signs).
- Coordinate with the City of Hayward to install warning signage (such as caution signage for exiting vehicles) and continental crosswalks at Site Access/Tennyson Road intersection.
- Explore options to improve pedestrian accessibility west of the project site, including along $16^{\text {th }}$ Street and Hancock Street. Improvements can include marked crosswalks and bulbouts at the East $16^{\text {th }}$ Street/Hancock Street intersection.
- There is the opportunity to add yellow continental school crosswalks at the Tennyson Road/Mission Boulevard intersection.

To address bicycling conditions and accessibility, potential bicycle-oriented treatments that could be considered as part of design review and conditions of approval include:

- Coordinate with the City of Hayward to install signage (such as bikeway signage and caution signage) and green conflict zone markings through the Site Access Road/Tennyson Road intersection.
- Consider implementing facilities to accommodate bicyclists (and pedestrians) crossing Tennyson Road to access the project site (e.g., marked north/south crosswalk at the Site Access Road/Tennyson Road intersection or a midblock location).
- Consider a treatment to improve downhill westbound bicycling conditions approaching the Mission Boulevard/Tennyson Road intersection. Note, Solutions for this location are limited by multiple constraints:
- A pocket bike lane between the through and right turn lanes may not be feasible due to the curb-to-curb right-of-way or to avoid offsetting the westbound through lane. The length of the pocket bike lane (more than 300 feet) could result in a high-stress situation with vehicles traveling on both sides of bicyclists for an extended period of time.
- A shared bike/right turn lane may be high-stress for children and other users due to the length of the right-turn lane and downhill vehicle speeds.
- Solutions may require shortening the westbound right-turn lane at the Mission Boulevard \& Tennyson Road intersection to reduce bicyclist stress.
- Consider installing bike routes with sharrows along residential roads such as Hancock Street and $16^{\text {th }}$ Street to facilitate bike access to and from the project. This could be combined with traffic calming strategies due to increased vehicle volumes.

Recommendations to improve student pick-up/drop-off circulation consist of the following:

- Install school area signage and pavement markings according to MUTCD standards.
- Relocate the northern drop-off area away from the traffic circle.
- Short-term parking spaces should be identified past the student loading area and near the building entrance.
- Block access to the residential area of the parking lot during student drop-off/pick-up
- Assign staff parking to the areas west of the traffic circle, leaving the parking spaces within the loop drive open for parents during the drop-off and pick-up times.
- At the designated drop-off areas north and west of the elementary school building, paint the curb white and mark it as "passenger loading during student drop-off and pick-up times." "No Parking" signs should be installed indicating the times of the day when parking is not allowed.
- Traffic cones and other channelizing devices can be used to minimize pedestrian/vehicles conflicts.
- Student safety patrols and loading supervisors should be well trained and wear reflective safety vests.
- Install signage to indicate that parking is not allowed during drop-off/pick-up times and drivers must remain in the vehicles. Signage should also direct kindergarten/early childhood and lower grade drop-off/pick-up to the southern drop-off/pick-up zones, and upper grade drop-off/pick-up to the northern drop-off/pickup zone. Kindergarten/early childhood students should be walked to the school buildings by staff during drop-off times, as opposed to parents parking and walking their students.
- The applicant for the school should prepare a traffic and parking management plan. The plan would identify the parking areas for staff, visitors, parking restrictions, management of the student drop-off/pick-up, locations of crossing guards, staff and monitors assisting with student drop-off/pick-up, and an advanced student identification system so students can be matched to their parents. The plan should be prepared for the satisfaction of City of Hayward Public Works staff and submitted prior to building occupancy permits. The plan should include a process to reduce or eliminate the need for the parents to get out of the vehicle at drop-off locations to provide an efficient and safe drop-off and pick-up procedure. The plan should also include staggered dropoff schedules.
- The applicant should prepare a transportation demand management (TDM) plan to encourage carpooling, rideshare, and other modes and facilitate carpool matching for staff and students.

Given the anticipated increase in traffic volumes on local residential streets such as $16^{\text {th }}$ Street and Hancock Street, project applicant should work with the City of Hayward to explore options for implementing traffic calming techniques along those streets. These measures can also support improved bicycle and pedestrian conditions in the neighborhood and access to the project site. Potential traffic calming techniques that could be applied to these streets include:

- Narrowing lanes
- Adding curb extensions and bulbouts
- Horizontal deflection
- On-site restrictions should be put in place to prohibit access to/from the project's charter school component from the East $16^{\text {th }}$ Street driveways during peak periods of school pick-up and drop-off.

Recommendations to improve circulation and access are as follows:

- Along $16^{\text {th }}$ Street, ample trees and on-street parking could potentially obstruct driveway sight distance. Parking should be prohibited within close proximity of the driveways to improve visibility and sight distance.
- In order to improve visibility and safety at the school access point on Tennyson Road for eastbound and westbound vehicles, it is recommended that an inbound left turn lane be added along Tennyson Road at the Site Access Road. Tennyson Road is currently approximately 35 feet wide (with two vehicle lanes and two bike lanes) adjacent to the project. Adding an inbound turn lane and its taper would require widening Tennyson Road by approximately 11 feet.

Section 2 - Methodologies and Existing Conditions

METHODOLOGIES AND EXISTING CONDITIONS

PG 3 is located at the northeastern corner of Mission Boulevard and Tennyson Road in Hayward. The proposed project consists of 176 affordable rental apartments (38 studios, 47 one-bedroom, 44 twobedroom, 47 three-bedroom) and a charter school serving 384 elementary students. Primary access to the project site for the school portion will be provided via Tennyson Road, with secondary access for the residential portion via two driveways on $16^{\text {th }}$ Street. The study area and project site are shown in Figure 1.

This local transportation analysis is therefore subject to the regulations and standards in place in the City of Hayward. These standards are outlined in the Hayward 2040 General Plan - Mobility Element (2014) and the City of Hayward Interim Traffic Study Guidelines (March 2017). Note, the City of Hayward published its updated Transportation Impact Analysis Guidelines in December 2020; however, this report refers to standards and methodologies that were in place at the time of scoping.

The analysis methodology used in this report was approved by City Transportation Staff prior to commencement of the study.

Intersection Level of Service Standards

Under Senate Bill (SB) 743, a project's effect on automobile delay shall not constitute a significant environmental impact. Therefore, level of service (LOS) and other similar vehicle delay or capacity metrics may no longer serve as transportation impact metrics for California Environmental Quality Act (CEQA) impact analyses. The Governor's Office of Planning and Research (OPR) has updated the CEQA Guidelines and provided a final technical advisory in December 2018 which recommends vehicle miles traveled (VMT) as the most appropriate measure of transportation impacts under CEQA. For land use and transportation projects, SB 743-compliant CEQA analysis became mandatory on July 1, 2020.

The City of Hayward has adopted VMT thresholds of significance and screening criteria, which were used in the VMT Impact Assessment Memorandum for impact analysis purposes. This report documents LOS analysis (consistent with the City's 2017 interim guidelines and the City's 2040 General Plan polices) which was considered part of the non-CEQA analysis conducted to determine any negative project effects on local roadway operations.

Goal 4 Local Circulation-M-4.3 of the City of Hayward's 2040 General Plan requires intersections to maintain a peak-hour level of service (LOS) of E or better for signalized intersections. M-4.3 describes this as follows: The City shall maintain a minimum Level of Service E at signalized intersections during the peak commute periods except when a LOS F may be acceptable due to costs of mitigation or when there would be other unacceptable impacts, such as right-of-way acquisition or degradation of the pedestrian environment due to increased crossing distances or unacceptable crossing delays.

Under SB 743, a project's effect on automobile delay shall not constitute a significant environmental impact. Therefore, LOS is included for non-CEQA purposes to determine if local intersections operate acceptably and if the project would result in any operational deficiencies on the local roadway network. This approach is consistent with the City's adopted thresholds of significance and screening criteria.

Signalized Intersections

Signalized intersection improvements should be identified if the project would degrade the AM or PM peak hour conditions from an acceptable LOS E or better under the No Project scenario to an unacceptable LOS F under the Plus Project scenario. The exception to this criterion is when LOS F is determined by the City of Hayward as acceptable due to right-of-way constraints or when there would be unacceptable impacts to other modes of travel, such as bicycle, pedestrian, or transit.

In addition, improvements should be identified at an intersection already operating at LOS F under an Existing or No Project scenario if the addition of project traffic results in an increase of 5.0 seconds or more to the intersection's average control delay.

Unsignalized Intersections

At unsignalized intersections, the need for improvements is based on LOS and delay, and whether any of the following are met:

- Traffic signal warrant,
- Pedestrian signal warrant, or
- All-way stop warrant

Note that solely triggering a warrant does not trigger the need for an intersection improvement, but the City will at its discretion require or not require a signal be installed, where warranted.

Level of Service Definitions

In this report, LOS is based on the Highway Capacity Manual (HCM) 6th edition definitions, included as Table 1 for ease of reference. The HCM methodology assigns a level of service (LOS) grade to an intersection based on the delay for vehicles at the intersection, ranging from LOS A to LOS F; LOS A signifies very slight delay with no approach phase fully utilized, while LOS F signifies very high delays and congestion, frequent cycle failures, and long queues. For signalized and all-way stop-controlled intersections, the average control delay for all vehicles is assessed; for two-way stop-controlled intersections, the intersection approach with the highest delay is utilized.

Table 1: Level of Service Standards

Level of Service	Delay Per Vehicle (Seconds) A	
	Unsignalized Intersection	
C	<10.0	<10.0
D	>10.0 to 20.0	>10.0 to 15.0
E	>20.0 to 35.0	>15.0 to 25.0
F	>35.0 to 55.0	>25.0 to 35.0
	>55.0 to 80.0	>35.0 to 50.0

Source: Highway Capacity Manual

Study Intersections

A total of eight study intersections (listed in Table 2 and shown in Figure 2) were selected for the purposes of this analysis. All study intersections are under the City of Hayward's jurisdiction. These study intersections were selected based on discussions with City staff and the project's anticipated trip distribution patterns.

Table 2: Study Intersections

| Intersection | Trafific Control | |
| :---: | :--- | :---: | :---: |
| 1 | Mission Boulevard \& Calhoun Street | Signal |
| 2 | Mission Boulevard \& Hancock Street | Signal |
| 3 | East 16th Street \& Hancock Street | TWSC |
| 4 | Whitman Street/Beatron Way \& Tennyson Road | Signal |
| 5 | East 12th Street/Dixon Street \& Tennyson Road | Signal |
| 6 | Mission Boulevard \& Tennyson Road | Signal |
| 7 | Site Access Road \& Tennyson Road | TWSC |
| 8 | Mission Boulevard \& Valle Vista Avenue | Signal |
| Note: TWSC sIGNIFIES A TWO-WAY STOP-CONTROLLED INTERSECTION. AWSC SIGNIFIES AN ALL-WAY STOP-CONTROLLED INTERSECTION. | | |

EXISTING NETWORK

Existing multimodal transportation facilities are discussed in this section.

ROADWAY NETWORK

The roadway system in the study area consists of arterial, collector, and local roadways that serve local and regional traffic demand. The vehicular facilities in the study area are discussed below. Signalized intersections in the study area are shown in Figure 3.

Arterials Roadways

Mission Boulevard is a north-south facility that is classified as a Principal Arterial and designated as a truck route by the City of Hayward. Mission boulevard runs from Interstate 680 in Fremont to the Interstate 580/Interstate 238 interchange in Castro Valley. Also known as State Route 238 (SR 238), the road splits into two one-way roads north through downtown Hayward: Foothill Boulevard heading northbound and Mission Boulevard heading southbound. Within the study area, Mission Boulevard is a six-lane facility with a center median south of Industrial Parkway. North of Industrial Parkway, Mission Boulevard is primarily a four-lane facility with a center median, but widens to a six-lane facility at the intersection approaches and departures at Harder Road, Tennyson Road, and Industrial Parkway. Travel lanes are typically 11 feet wide, and on-street parking is available when the facility is four lanes wide. The curb-to-curb right-of-way is approximately 80 feet and widens up to 106 feet at its widest around intersections. The posted speed limit is 35 miles per hour (mph) north of Tennyson Road and 40 mph south of Tennyson Road.

Tennyson Road is an east-west Principal Arterial and truck route (west of Mission Boulevard) that runs from Mission Boulevard west to the South Hayward Bay Area Rapid Transit (BART) station, Interstate 880, and Industrial Boulevard. East of Mission Boulevard, Tennyson Road is classified as a local road and connects to one of the proposed project access points. The road is a four-lane facility with a center median within the study area. Travel lanes are typically 12 feet wide, and there is on-street parking available on both sides of the roadway. The curb-to-curb right-of-way is approximately 90 feet wide. The posted speed limit varies between 25 and 35 mph .

Industrial Parkway is an east-west Minor Arterial and truck route (west of Mission Boulevard) that runs from Mission Boulevard west to Interstate I-880 (I-880) and Hesperian Boulevard before turning northward as Industrial Boulevard and connecting to State Route (SR) 92. At the Ruus Road intersection, Industrial Parkway becomes two separate roads: Industrial Parkway SW and Industrial Parkway W. Industrial Parkway SW allows northbound traffic from I-880 to exit at Whipple Road to access Industrial Parkway SW; there is no such northbound exit when I-880 and Industrial Parkway W intersect. The road is a four-lane facility with a center median within the study area. Travel lanes are typically 11 feet wide, and there is on-street parking available on both sides of the roadway. The curb-to-curb right-of-way is approximately 90 feet wide, widening to 102 feet wide on the eastbound approach with the Mission Boulevard intersection. The posted speed limit is 45 mph . East of Mission boulevard, this facility is Alquire Parkway.

Harder Road is an east-west Minor Arterial and truck route from Mission Boulevard west that connects with SR 92 and Jackson Road. Harder Road to the east of Mission Boulevard is a Collector Road that provides access to California State University, East Bay. The road is a four-lane facility with a center median within the study area. The inner travel lanes on Harder Road are 12 feet wide, and the outer travel lanes are 15 feet wide. The curb-to-curb right-of-way is approximately 88 feet wide. The posted speed limit is 35 mph .

Huntwood Avenue is a north-south Minor Arterial that connects to Industrial Parkway W and the city's industrial area to the south, as well as toward Harder Road heading north. The road is a truck route north of Tennyson Road. The road is a four-lane undivided roadway south of Tennyson Road and a two-lane road north of Tennyson Road. Along the four-lane portion, lanes are 11 feet wide, and there is on-street parking on both sides of the street where there is no center left-turn lane. The curb-to-curb right-of-way on the fourlane section of the road is approximately 72 feet. Along the two-lane portion, lanes are 11 feet wide, and
there is on-street parking on both sides of the street. The curb-to-curb right-of-way is approximately 48 feet. The posted speed limit is 30 mph .

Collector Roadways

Dixon Street is a north-south Collector that runs from Industrial Parkway and the Mission Hills of Hayward Golf Course to the South Hayward BART station at Tennyson Road. North of Tennyson Road, the road becomes East $12^{\text {th }}$ Street and continues to head north. The road is a two-lane undivided facility with 12 -foot travel lanes and on-street parking on both sides of the road. There is no on-street parking when a left-turn lane is present. The curb-to-curb right-of-way is approximately 48 feet. The posted speed limit is 25 mph .

Valle Vista Avenue is an east-west Collector that runs from Mission Boulevard to the BART railroad tracks, where it ends in a cul-de-sac. The road is a two-lane undivided facility and with a double yellow centerline at intersection approaches. Travel lanes are approximately 13 to 14 feet wide, and there is on-street parking along the road. The curb-to-curb right-of-way varies between 30 feet near Mission Boulevard to 40 feet at the western end of the road. Valle Vista Avenue does not have a posted speed limit.

Alquire Parkway is an east-west Collector that connects the Mission Boulevard/Industrial Parkway intersection with neighborhoods to the east. The road is classified as a Collector between Mission Boulevard and Vanderbilt Street; heading east, the road becomes a Local roadway. The road is a divided facility on the approach to Mission Boulevard; otherwise, it is a two-lane undivided roadway with on-street parking east of Vanderbilt Street. Travel lanes vary between 10 and 14 feet depending on the section of roadway. The curb-to-curb right-of-way varies between 42 feet on the two-lane section and 80 feet on the approach to Mission Boulevard. The posted speed limit is 25 mph . West of Mission boulevard, this facility is Industrial Parkway.

Whitman Street is a north-south Collector that runs from Tennyson Road north toward Jackson Street, running parallel to the BART railroad tracks. The road connects to several schools, including Cesar Chavez Middle School, Tennyson High School, and Harder Elementary School. The road is a two-lane undivided facility with 11 -foot travel lanes and on-street parking on both sides of the road. The curb-to-curb right-ofway is approximately 44 feet. The posted speed limit is 25 mph .

Local Roadways

Hancock Street is an east-west Local roadway that runs from the general site area in the east to the BART railroad tracks. The road is a two-lane undivided facility and with a double yellow centerline at the approaches to Mission Boulevard. The curb-to-curb right-of-way varies between 30 feet west of Mission Boulevard and 48 feet east of Mission Boulevard. There is on-street parking on both sides of the road along its entire length. The posted speed limit is 25 mph .

East $1^{\text {th }}$ Street is a north-south Local roadway that runs from a cul-de-sac near the proposed project site to Calhoun Street and Moreau Catholic High School. The road is a two-lane undivided facility with no centerline. The curb-to-curb right-of-way is approximately 36 feet within the study area with on-street parking on both sides of the road. This road does not have a posted speed limit.

Calhoun Street is an east-west Local roadway that runs from Mission Boulevard and Moreau Catholic High School east into residential areas. The road is a winding two-lane undivided facility and with a double yellow centerline when approaching Mission Boulevard. The curb-to-curb right-of-way is approximately 30 feet, with a narrowing and varying right-of-way as the roadways ascends heading east. The posted speed limit is 25 mph .

East 12 ${ }^{\text {th }}$ Street is a north-south Local roadway that connects to Dixon Street, Tennyson Road, and the South Hayward BART station to the south and Jefferson Street to the north. The road is a two-lane undivided facility and with a double yellow centerline when approaching the Tennyson Road intersection. The curb-to-curb right-of-way is approximately 32 feet, and there is on-street parking on both sides of the roadway.

The only signage with speed information is the "Speed Humps Ahead - 15 MPH " accompanying speed humps.

Beatron Way is a north-south Local roadway that connects to Whitman Street, Tennyson Road, and Cesar Chavez Middle School to the north into the neighborhood immediately to the south. The road is a two-lane undivided facility with a double yellow centerline at intersections and around curves. The curb-to-curb right-of-way is approximately 34 feet, and there is on-street parking on both sides of the roadway. The posted speed limit is 25 mph .

TRANSIT SERVICE

The transit system in the study area consists of local bus and regional rail service. The transit facilities in the study area are discussed below and shown in Figure 4.

Alameda-Contra Costa Transit District

Alameda-Contra Costa Transit District (AC Transit) provides bus service in the study area. AC Transit bus routes and local bus stops are shown in Figure 4. In addition, weekday bus service in the study area is documented in Table 3.

Table 3: Existing AC Transit Weekday Service

Route	Beginning and End Points	Peak / Off-Peak Frequency (in	
	North/West		Minutes)
41			$60 / 60$
86	Hayward BART	Union Landing Transit Center	$35 / 35$
99	Hayward BART	South Hayward BART	$25 / 25$
801	San Leandro BART	Fremont BART	N/A / 60

Source: AC Transit Service Changes Effective Sunday, March 29, 2020.
Two of the four bus lines run along Mission Boulevard, and all four routes make stops at the South Hayward BART station. Line 801 is an overnight bus that complements Line 99 to provide 24 -hour service on Mission Boulevard. Line 41 runs north-south with service along Huntwood Avenue near the site, and Line 86 is a local route in Hayward that connects downtown Hayward, Winton Avenue, Cabot Boulevard, Industrial Boulevard, and Tennyson Road to the South Hayward BART.

Generally, curbside transit stops along Mission Boulevard and Tennyson Road in the study area are identified with posted signs and lighting and do not include passenger amenities such as a shelter, seating, landscaping, or bicycle parking. The northbound and southbound bus stops at Mission Boulevard and Tennyson Road each provide a shelter, bench, and trash can. The South Hayward BART station has bus boarding islands, bike lockers, shelters, benches, trash cans, signage, and lighting.

Bay Area Rapid Transit

The South Hayward Bay Area Rapid Transit (BART) station is a major transit hub and a key transfer point for BART-to-bus and bus-to-bus connections. There are nine bus bays serving four AC Transit routes at the South Hayward BART station. BART operates regional heavy rail service connecting San Francisco, San Mateo, Alameda and Contra Costa Counties. The South Hayward BART station is located to the west of the study area and is part of the Berryessa/North San Jose-Richmond and Berryessa/North San Jose-Daly City lines. Each line currently operates at 15-minute headways during peak periods, resulting in an average peak period frequency of 7.5 minutes at the station.

Other Transit Services

The Hayward Greyhound bus station is located north of the study area at the Hayward BART station. In addition, the Hayward Amtrak Station is located approximately three miles northwest of the South Hayward BART station; the Hayward Amtrak station is part of the Capitol Corridor operating between San Jose and Sacramento.

PEDESTRIAN FACILITIES

The study area offers several types of facilities and amenities that support walking. The availability and quality of pedestrian facilities can be analyzed using seven key factors as shown in Table 4.

Table 4: Pedestrian Facility Conditions

Factor	Description	Assessment
Sidewalk Availability	Sidewalk availability is core to supporting walkability and safety separating pedestrians from vehicles and other modes. In addition, it is important that sidewalks are present on both sides of the roadway and are available along the entire segment rather than end midblock.	All of the Arterial roadways within the study area have sidewalks on both sides of the roadway with no gaps. Most Collector roadways have complete sidewalk coverage, as well. The exceptions are Valle Vista Avenue (which has sidewalk gaps west of Mission Boulevard), Harder Road (where the sidewalks on both sides of the road drop east of Bryn Mawr Avenue), and Tennyson Road (on the south side east of Mission Boulevard). There are significant sidewalks gaps along Local roads in the study area, especially east of Mission Boulevard. While there are sidewalks along Hancock Street, East 12th Street, and Beatron Way, East $16^{\text {th }}$ Street has sidewalks on the west side of the street only (which contains gaps), and Calhoun Street generally does not provide sidewalks.
Sidewalk Conditions	Cracked, broken, or otherwise damaged sidewalks can pose a safety hazard and discourage walking.	Where sidewalks exist, they are generally in good condition free of cracks, breaks, or visible damage. At a few locations along Hancock Street and Beatron Way, grass and other plants have overtaken parts of the sidewalk, but the sidewalk is continuous through all of these areas.
Crosswalk Availability	Marked crosswalks can safely accommodate pedestrians that need to cross streets. A lack of marked crosswalks could hinder walkability since pedestrians need to travel greater distances to reach a safe marked crossing point. Drivers may also be less likely to yield to intersections at unmarked crossings.	All signalized intersections on Mission Boulevard within the study area have marked crosswalks, and all of these crosswalks have continental striping, except for the east and west crosswalks at Mission Boulevard/Industrial Parkway. Intersections on Tennyson Road have a mixture of continental and standard striping. These crosswalks are in good condition. There are no marked crosswalks at the East $16^{\text {th }}$ Street/Hancock Street and Site Access/Tennyson Road intersections. As shown in Figure 5, arterial intersections in the study area tend to provide Americans with Disabilities Act (ADA) compliant curb ramps. Local streets to the west of Mission Boulevard tend to provide standard curb ramps, while Local streets to the east of Mission Boulevard (near the project site) generally lack curb ramps.
	Shading, whether natural or artificial, can encourage walking in areas such as Southern California which are relatively warm with limited rainfall, especially in the summer.	Mission Boulevard, with its wide right-of-way, generally lacks shade for pedestrians, especially on the east side of the road. Other arterials, such as Tennyson Road and Industrial Parkway, have more intermittent shade from street trees. Several Collector and Local roadways have ample shade for pedestrians from street trees or buildings. These

Factor	Description	Assessment
		include Dixon Street, Hancock Street, Beatron Way, Huntwood Avenue, and East $16^{\text {th }}$ Street. A couple of streets do not, including East $12^{\text {th }}$ Street and Whitman Street.
is Flat Grade	Steep hills and ravines can discourage walking, especially for pedestrians with limited mobility.	The land to the east of Mission Boulevard slopes upward at a fairly steep angle for pedestrians, which affects pedestrian accessibility from Mission Boulevard. The remaining study area is generally flat with mild inclines or declines for short stretches.
	Buffers which provide separation between pedestrians and moving vehicles can help improve the walking experience, and can include landscaping, parked vehicles, and bulbouts, which serve to both reduce pedestrian crossing distances at intersections and as a traffic calming measure.	There are several roadway sections that have a landscaped or planted buffer between the sidewalk and the road. These include Tennyson Road east of Mission Boulevard, Hancock Street, Huntwood Avenue south of Tennyson Road, and Industrial Parkway (the south side of the road is a multi-use path). There are also several roadway sections that have an intermittent buffer, such as street trees or planters. These include Mission Boulevard, Tennyson Road west of Mission Boulevard, and Huntwood Avenue north of Tennyson Road. All of these roads also have parked cars between the sidewalk and the motor vehicle lanes. All other low-volume roads have intermittent buffers or no buffer space at all.
Amenities	In addition to physical facilities that accommodate walking, useful or interesting amenities along sidewalks create a more interesting walking environment and increase pedestrian comfort. Amenities can include sidewalk-adjacent retail and restaurants, landscaping, and street furniture.	Street furniture is generally lacking along the roadways in the study area, except at bus stops with benches and shelters. The arterial roadways in the study area generally have either landscaping features or sidewalk-adjacent businesses. Tennyson Road, Industrial Parkway, and Huntwood Avenue have landscaping present. Mission Boulevard has several street-facing businesses along the corridor, although these are often spaced long distances apart. Lower classification roads generally have some landscaping or no other pedestrian amenities.

Source: Kittelson and Associates, Inc., 2021.

BICYCLE FACILITIES

The study area contains a bicycle facilities network that consists primarily of dedicated street space for bicyclists. Figure 6 displays the existing designated bicycle facilities in the study area.

Bicycle facilities are categorized into four types, as described below:

- Class I Bikeway (Bike Path). Also known as a shared path or multi-use path, a bike path is a paved right-of-way for bicycle travel that is completely separate from any street or highway.
- Class II Bikeway (Bike Lane). A striped and stenciled lane for one-way bicycle travel on a street or highway. This facility could include a buffered space between the bike lane and vehicle lane and the bike lane could be adjacent to on-street parking.
- Class III Bikeway (Bike Route). A signed route along a street where the bicyclist shares the right-ofway with motor vehicles. This facility can also be designated using a shared-lane marking (sharrow).
- Class IV Bikeway (Separated Bike Lane). A bikeway for the exclusive use of bicycles including a separation required between the separated bikeway and the through vehicular traffic. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

As shown in Figure 6, the existing bicycle facilities near the project site include:

- Class Il bike lanes on Tennyson Road
- Class II bike lanes on Dixon Street
- Class II bike lanes on Whitman Street

Other on-street bicycle facilities in the study area include the following:

- Green conflict zone markings and pocket bike lanes along Tennyson Road west of Mission Boulevard

The City of Hayward Bicycle \& Pedestrian Master Plan (BPMP), includes the following bicycle improvements in the study area:

- Class IV separated bikeway on Mission Boulevard
- Class IV separated bikeway on Tennyson Road west of Mission Boulevard
- Class IV separated bikeway on Huntwood Avenue south of Tennyson Road
- Two Class I paths (parallel to Mission Boulevard and to the railroad tracks)
- Class Il buffered bicycles lane on Dixon Street
- Class III bicycle boulevard on East 12th Street

EXISTING TRAFFIC VOLUMES

Automobile Traffic Volumes

Vehicle turning movement data was collected in March 2020 during the weekday morning (7:00 AM to 9:00 AM) and evening (4:00 PM to 6:00 PM) peak periods. Because the traffic counts were collected shortly before the statewide COVID-19 shelter in place order, the counts were anticipated to be lower than normal. Therefore, the counts were compared to traffic counts collected during normal conditions in 2018 and 2019 at two of the study intersections (intersections \#6 and \#8) as well as two other adjacent intersections on Mission Boulevard. Generally, it was found that the AM peak hour counts were up to 15% lower during the pandemic and the PM peak hour counts were up to 5% lower. Therefore, it was concluded that:

- Historical counts would be used to analyze intersections \#6 and \#8.
- For the remaining intersections, the March 2020 counts would be used with growth applied uniformly (15% to the AM counts and 5% to the PM counts).
- The adjustment methodology was verified and approved by City Transportation staff

Figure 7 shows the existing automobile peak hour volumes at the study intersections, including the adjusted volumes where applicable. Intersection control (i.e., signalized or stop-controlled) and lane geometries are also shown. Field-collected count sheets and the COVID-19 adjustment calculations are provided in the appendix to this report.

AM(PM) - Traffic Volume

- Alof - All-Way Stop
(roop
$\stackrel{\text { All-Way St }}{ }$
-
- - Traffic Signal

Pedestrian and Bicycle Volumes

Pedestrian and bicycle volumes were collected at the study intersections as part of the data collection effort. Table 5 and Table 6 present the pedestrian and bicycle volume data for the weekday AM and weekday PM peak hours, respectively. Generally, most intersections experienced higher levels of bicycle and pedestrian activity during the PM peak hour. One exception is the intersection of Whitman Street/Beatron Way \& Tennyson Road, which experienced more than twice the pedestrian volumes during the AM peak hour compared to the PM peak hour.

Table 5: Pedestrian and Bicycle Volumes (Weekday AM Peak Hour)

	Intersection	Pedestrian Crossings (by intersection leg)				Northbound Bicycles			Southbound Bicycles			Eastbound Bicycles			Westbound Bicycles		
		N	S	E	W	L	T	R	L	T	R	L	T	R	L	T	R
1	Mission Boulevard \& Calhoun Street	7	3	1	7	0	1	0	0	1	0	0	0	0	0	0	1
2	Mission Boulevard \& Hancock Street	2	4	35	6	0	0	0	0	1	0	0	0	0	0	1	0
3	East 1 6th Street \& Hancock Street	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Whitman Street/Beatron Way \& Tennyson Road	19	57	34	94	1	2	0	0	0	2	4	4	0	0	8	2
5	East 12th Street/Dixon Street \& Tennyson Road	6	8	6	25	6	0	0	0	1	0	0	0	0	0	0	0
6	Mission Boulevard \& Tennyson Road	2	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0
7	Site Access Road \& Tennyson Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Mission Boulevard \& Valle Vista Avenue	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Source: Quality Counts manual turning movement counts (March 2020).
NOTE: AM PERIOD COUNTS WERE NOT COLLECTED AT INTERSECTION \#8 IN MARCH 2020.

Table 6: Pedestrian and Bicycle Volumes (Weekday PM Peak Hour)

	Intersection	Pedestrian Crossings (by intersection leg)				Northbound Bicycles			Southbound Bicycles			Eastbound Bicycles			Westbound Bicycles		
		N	S	E	W	L	T	R	L	T	R	L	T	R	L	T	R
1	Mission Boulevard \& Calhoun Street	6	9	1	6	0	1	0	0	2	0	0	0	0	0	0	0
2	Mission Boulevard \& Hancock Street	7	4	28	1	0	2	0	0	2	1	0	1	0	0	0	0
3	East 16 th Street \& Hancock Street	3	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0
4	Whitman Street/Beatron Way \& Tennyson Road	5	57	8	18	0	0	0	2	0	4	3	12	0	0	4	1
5	East 12th Street/Dixon Street \& Tennyson Road	17	10	8	23	2	1	0	0	0	0	1	3	3	1	0	0
6	Mission Boulevard \& Tennyson Road	3	1	4	1	0	1	0	0	0	0	0	0	0	0	0	0
7	Site Access Road \& Tennyson Road	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Mission Boulevard \& Valle Vista Avenue	0	5	3	5	1	0	0	0	5	1	0	0	4	0	0	0

Source: Quality Counts manual turning movement counts (March 2020).

EXISTING TRAFFIC OPERATIONS AND PERFORMANCE

Traffic Signal Warrants

Traffic signal warrants are standards that provide guidelines in the determination of the need for a traffic signal. A traffic signal should not be installed if no warrants are met, since the installation of traffic signals may increase delays for the majority of through traffic and may increase the potential for accidents.

As stated in the FHWA/Caltrans 2014 California Manual of Uniform Traffic Control Devices (CA-MUTCD), "An engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location. The investigation of the need for a traffic control signal shall include an analysis of the applicable factors contained in the following traffic signal warrants and other factors related to existing operation and safety at the study location:

- Warrant 1, Eight-Hour Vehicular Volume.
- Warrant 2, Four-Hour Vehicular Volume.
- Warrant 3, Peak Hour.
- Warrant 4, Pedestrian Volume.
- Warrant 5, School Crossing.
- Warrant 6, Coordinated Signal System.
- Warrant 7, Crash Experience.
- Warrant 8, Roadway Network.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

This local transportation assessment did not evaluate the full panoply of warrants for traffic signals, but instead focused on the peak hour warrant. The peak hour warrant is being used in this study as an "indicator" of the likelihood of an existing or future unsignalized intersection warranting a traffic signal.

Intersections that fail to exceed the peak hour warrant are considered (for the purposes of this impact analysis) to be unlikely to meet one or more of the other signal warrants (such as the 4-hour or 8-hour warrants). However, this does not mean that a signal is definitely unwarranted. A signal may be warranted by other criteria, some of which cannot be known until the intersection is constructed and operational. This peak hour analysis is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction.

As discussed earlier in this report, the need for improvements at unsignalized intersections is based on LOS and delay, and whether any of the following are met:

- Traffic signal warrant,
- Pedestrian signal warrant, or
- All-way stop warrant

Note that solely triggering a warrant does not trigger the need for an intersection improvement, but the City will at its discretion require or not require a signal be installed, where warranted.

Regardless of intersection control, per the City of Hayward Interim Traffic Study Guidelines (2017), improvements would be required at an intersection already operating at LOS F under an Existing or No Project scenario if the addition of project traffic results in an increase of 5.0 seconds or more in the intersection's average control delay. Unsignalized intersections were evaluated using the Peak Hour Volume Warrant (Warrant No. 3) in the CA-MUTCD. Even if the Peak Hour Volume Warrant is met, a more detailed signal warrant study is recommended before a signal is installed. The more detailed study should consider volumes during the daily peak hours of roadway traffic, pedestrian traffic, and collision histories.

Neither of the two unsignalized study intersections (\#3 East $16^{\text {th }}$ Street \& Hancock Street and \#7 Site Access Road \& Tennyson Road) meet peak hour traffic signal warrants under existing conditions for either the AM or PM peak hour. Existing traffic signal warrant worksheets are provided in the appendix to this report.

Automobile Level of Service

LOS at the study intersections were evaluated based on the HCM $6^{\text {th }}$ Edition methodology, as implemented in the Synchro 10 software package. LOS analysis was performed for the weekday AM and PM peak hours using COVID-adjusted traffic counts collected in the field. Table 7 provides a summary of the existing automobile level of service. As shown in the table, all study intersections operate acceptably at LOS C or better. The Existing Conditions LOS worksheets for the study intersections are provided in the appendix to this report.

Table 7: Automobile Level of Service, Existing Conditions

	Intersection	Traffic	Week		Week	
			Delay (sec)	LOS	Delay (sec)	LOS
1	Mission Boulevard \& Calhoun Street	Signal	18.2	B	9.7	A
2	Mission Boulevard \& Hancock Street	Signal	11.0	B	8.2	A
3	East 1 6th Street \& Hancock Street	TWSC	11.3	B	8.9	A
4	Whitman Street/Beatron Way \& Tennyson Road	Signal	26.8	C	23.1	C
5	East 12th Street/Dixon Street \& Tennyson Road	Signal	30.2	C	26.1	C
6	Mission Boulevard \& Tennyson Road	Signal	21.2	C	24.5	C
7	Site Access Road \& Tennyson Road	TWSC	0.0	A	0.0	A
8	Mission Boulevard \& Valle Vista Avenue	Signal	23.0	C	13.0	B

SOURCE: KIttelson \& ASSOCIATES, INC. 2021

Queve Storage

The $95^{\text {th }}$ percentile queues at the study intersections were reviewed for informational purposes to identify locations where these may exceed the available storage. The $95^{\text {th }}$ percentile queue lengths represent queues that have only a 5% probability of occurring within the analyzed peak hour. This measure is typically used in traffic engineering as a conservative measure of queuing. The average driver would experience shorter queue lengths than the reported $95^{\text {th }}$ percentile queues.

For through movements and turning movements without a dedicated lane, the available storage is assumed to be the distance from the stop bar to the departure point of the nearest upstream stopcontrolled or signalized intersection. For turning movements with an exclusive turn lane, the length of the turn bay is assumed to be the available storage. Table 8 details the movements which were found to queue beyond their available storage capacity at the $95^{\text {th }}$ percentile demand level under Existing Conditions.

Table 8: Queue Lengths in Excess of Capacity, Existing Conditions

\#	Intersection	Movement	Peak Hour	Description
1	Mission Boulevard \& Calhoun Street	NBT/R	AM \& PM	This movement spills back beyond the stop-controlled intersections with Kellogg Avenue and Broadway Street.
		SBL	AM	This movement spills back beyond the stop-controlled intersection with Jefferson Street but does not exceed the length of its exclusive turn lane.
		SBT/R	AM \& PM	This movement spills back beyond the stop-controlled Jefferson Street intersection and the signal-controlled entrance to Moreau Catholic High School.
2	Mission Boulevard \& Hancock Street	NBT/R	PM	This movement spills back beyond the intersection with Tennyson Road.
4	Whitman Street / Beatron Way \& Tennyson Road	NBL/T/R	AM	This movement spills back beyond the adjacent uncontrolled intersection with Rochelle Avenue.
		SBL	AM	This movement spills back beyond the length of its exclusive turn lane and into the through lane.
		SBR	AM \& PM	This movement spills back beyond the length of its exclusive turn lane, blocking access to the pocket bike lane.
		EBL	AM \& PM	This movement spills back beyond the length of its exclusive turn lane and into the through lane.
		WBT	AM	This movement spills back beyond stop-controlled intersections with Oharron Drive and Pacific Street.
5	East 12th Street / Dixon Street \& Tennyson Road	NBL	AM \& PM	This movement spills back beyond the length of its exclusive turn lane and into the through lane.
		EBL	AM	This movement spills back beyond the length of its exclusive turn lane and into the through lane.
		EBR	AM \& PM	This movement spills back beyond the length of its exclusive turn lane, blocking access to the pocket bike lane.
		WBT/R	AM \& PM	This movement spills back beyond the stop-controlled intersection with 13th Street.
6	Mission Boulevard \& Tennyson Road	SBT	AM	This movement spills back beyond the stop-controlled intersection with Monticello Street.
8	Mission Boulevard \& Valle Vista Avenue	SBT/R	AM	This movement spills back beyond the stop-controlled intersection with Mariners Court.

SOURCE: Kittelson \& Associates, Inc. 2021.

Section 3 - Project Description

PROJECT DESCRIPTION

PG 3 is located at the northeastern corner of Mission Boulevard and Tennyson Road in Hayward, as shown in Figure 1. The proposed project consists of 176 affordable rental apartments (38 studios, 47 one-bedroom, 44 two-bedroom, 47 three-bedroom) and a charter school serving 384 elementary students. Primary access to the project site for the school portion will be provided via Tennyson Road, with secondary access for the residential portion via two driveways on $16^{\text {th }}$ Street. The proposed site plan is shown in Figure 8.

The charter school will consist of a new 35,360 square foot school and early education facility which will ultimately grow to serve 384 students from age 3 through $5^{\text {th }} / 6^{\text {th }}$ grade. The elementary school building will include 18 classrooms, an outdoor amphitheater, workrooms and administrative offices, an outdoor play area, and other spaces. The early childhood education center will include six classrooms, workrooms, administrative offices, a play area, and other spaces. Enrollment projections are provided in Table 9.

Table 9: Enrollment and Staffing Projections

Year	\# Students		Grades	\# Classrooms
2020-2021 Staff (est. FIE)				
$2021-2022$	48	PreK	3	17
$2022-2023$	96	PreK	6	28
$2023-2024$	144	PreK - Kinder	8	36
$2024-2025$	192	PreK - 1st	10	40
$2025-2026$	240	PreK - 2nd	12	45
$2026-2027$	288	PreK - 3rd	14	49
$2027-2028$	384	PreK - 4th	16	52

Source: School Program Overview
A total of 219 parking spaces would be provided in the parking areas located along the proposed internal site roadway. 24 of these spaces would be dedicated for school parking and six of these spaces would be shared between the residential and school uses. A total of 233 parking spaces would be provided for the proposed project overall, including 24 electric vehicle spaces, 51 compact spaces, and 10 accessible spaces.

A total of 44 dedicated school parking spaces would be provided, including 17 spaces along the site access road, 24 spaces within the proposed parking area, five spaces along the frontage of the elementary school building, and 4 spaces at the entrance to the early childhood education center. In addition, six shared spaces would be provided to accommodate both school and residential parking needs, for a total of 50 parking spaces available for school use.

Figure 8: Project Site Plan

Section 4 - Project Trip Generation/
 Distribution/Assignment

PROJECT TRIP GENERATION/ DISTRIBUTION/ASSIGNMENT

This section provides the vehicle trip generation and distribution estimates for the proposed project.

TRIP GENERATION

Project trip generation was estimated for the following three time periods, as shown in Table 10:

- Weekday daily
- Weekday AM peak hour
- Weekday PM peak hour

Trip generation for the project's affordable housing component was estimated using rates for the Multifamily Housing Mid-Rise land use (Code 221) in the ITE Trip Generation Manual, $10^{\text {th }}$ Edition. Trip generation for the project's charter school component was estimated using rates for the Charter Elementary School land use (Code 537). Given the charter school is in close proximity to residential units (including units adjacent to the project site), a 1% reduction was applied to the charter school trip generation to account for local non-motorized trips to the school. As shown in the table, the project is expected to generate 1,660 weekday daily vehicle trips, 485 weekday AM peak hour vehicle trips, and 131 weekday PM peak hour vehicle trips.

Table 10: Project Trip Generation Estimate

Land Use		Irip G	tion					
	Rate	Daily	AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Multifamily Housing (Mid-Rise) (221)	Units	5.44	26\%	74\%	0.36	61\%	39\%	0.44
Charter Elementary School (537)	Students	1.85	53\%	47\%	1.11	35\%	65\%	0.14
Trip Generation								
Land Use	Size	Daily	AM Peak Hour			PM Peak Hour		
			In	Out	Total	n	Out	Total
Multifamily Housing (Mid-Rise) (221)	176 Units	957	16	47	63	47	30	77
Charter Elementary School (537)	384 Students	710	226	200	426	19	35	54
Local Non-Vehicle School Trips (1\%)		-7	-2	-2	-4	0	0	0
TOTAL PROJECT TRIPS		1,660	240	245	485	66	65	131

Source: : Kittelson and Associates, Inc., 2021 ; Institute of Transportation Engineers, 2017.

Generally, the PM peak hour of trip generation for K-12 schools takes place earlier in the day compared to the standard PM peak hour of the adjacent roadway network. For example, the PM peak hour of trip generation for a school could take place between 2:00 PM and 3:00 PM, while the evening PM peak hour of the roadway network could take place between 5:00 PM and 6:00 PM. Table 11 shows the estimated trip generation for the charter school portion of the project during the PM peak hour of the trip generator. Note, the trip generation and assignment for the school's PM peak hour of generator is provided for informational purposes; Existing Plus Project operations analysis has not been conducted for this peak hour as the ambient/background traffic (e.g. Existing volumes) are lower than during the PM peak hour of the adjacent roadway network. Additionally, PM trip generation of schools tends to be staggered throughout
the afternoon as students may leave school at different times due to after-school activities, as opposed to AM trip generation where the majority of students generally arrive during the same time period.

Table 11: Charter Elementary School Trip Generation Estimate (PM Peak Hour of Generator)

Trip Generation Rates				
Land Use	Rate	PM Peak Hour		
		In	Out	Total
Charter Elementary School (537)	Students	46\%	54\%	0.69
Trip Generation				
Land Use	Size	PM Peak Hour		
		In	Out	Total
Charter Elementary School (537)	384 Students	122	143	265
Local Non-Vehicle School Trips (1\%)		-1	-1	-2
	TOTAL TRIPS	121	142	263

SOURCE: : Kittelson and Associates, Inc., 2021; Institute of Transportation Engineers, 2017.

TRIP DISTRIBUTION AND ASSIGNMENT

Project trip distribution was developed using the City of Hayward General Plan Update travel demand model. The project trip distribution is based on the model's distribution of trips in and out of the traffic analysis zone (TAZ) representing the project site, as well as adjustments to reflect local travel patterns and circulation conditions. The project trip distribution and intersection count locations are shown in Figure 9. In addition, as shown in the figure, the trip distribution includes an assumption that 1% of school trips will be local walking and bicycling trips rather than vehicle trips on the local roadway network.

Figure 10 presents the weekday AM and PM project-only turning movements that were derived from the trip generation and trip distribution discussed in this section. School trips were assigned to the access point off Tennyson Road, while residential trips were assigned to $16^{\text {th }}$ Street. These project-only volumes will be used in the Existing Plus Project operations analysis.

Charter school project trips for the PM peak hour of generator are shown for informational purposes in Figure 11.

AM(PM) - Traffic Volume
(ror) - All-Way Stop

- All-Way Sto
- Traffic Signal

Section 5 - Existing Plus Project Traffic Conditions

EXISTING PLUS PROJECT TRAFFIC CONDITIONS

This chapter discusses the results of the Existing Plus Project traffic operations analysis, which was conducted for non-CEQA local transportation analysis purposes.

EXISTING PLUS PROJECT AUTOMOBILE LEVEL OF SERVICE

The automobile turning movement counts for the Existing Plus Project scenario were developed from the sum of the Existing Conditions turning movement counts (Figure 7) and the Project Only turning movements (Figure 10). Figure 12 presents the Existing Plus Project turning movements.

Table 12 presents the Existing Conditions and Existing Plus Project delays and LOS for the study intersections. The table also compares the change in delay between the two scenarios. The Existing Plus Project LOS worksheets are provided in the appendix to this report.

As shown in the table, all study intersections continue to operate acceptably with the addition of project trips. Therefore, no operation improvements have been recommended.

Table 12: Automobile Level of Service, Existing Plus Project Conditions

	Intersection	Traffic	Peak	Wee	AM	Wee	PM	Change
				Delay (sec)	LOS	Delay (sec)	LOS	
1	Mission Boulevard \&	Signal	AM	18.2	B	20.5	C	2.3
	Calhoun Street		PM	9.7	A	10.1	B	0.4
2	Mission Boulevard \&	Signal	AM	11.0	B	17.2	B	6.2
	Hancock Street		PM	8.2	A	10.0	A	1.8
3	East 16th Street \&	TWSC	AM	11.3	B	14.2	B	2.9
	Hancock Street		PM	8.9	A	9.9	A	1.0
4	Whitman Street/Beatron	Signal	AM	26.8	C	27.5	C	0.7
	Way \& Tennyson Road		PM	23.1	C	23.3	C	0.2
5	East 12th Street/Dixon	Signal	AM	30.2	C	30.8	C	0.6
	Street \& Tennyson Road		PM	26.1	C	26.3	C	0.2
6	Mission Boulevard \&	Signal	AM	21.2	C	34.3	C	13.1
	Tennyson Road		PM	24.5	C	25.6	C	1.1
7	Site Access Road \&	TWSC	AM	0.0	A	10.3	B	10.3
	Tennyson Road		PM	0.0	A	8.7	A	8.7
8	Mission Boulevard \& Valle	Signal	AM	23.0	C	23.4	C	0.4
	Vista Avenue		PM	13.0	B	16.1	B	3.1

Source: Kittelson \& Associates, Inc. 2021

EXISTING PLUS PROJECT QUEUE STORAGE

The $95^{\text {th }}$ percentile queues at the study intersections were reviewed to identify locations where these may exceed the available storage. Table 13 details the movements which were found to queue beyond their available storage capacity at the $95^{\text {th }}$ percentile demand level under Existing Plus Project conditions. The project is not anticipated to increase the queve lengths by more than eight (8) car lengths at any of the movements that exceed storage capacity. Generally, the Project increases queue lengths between one and three cars at most study intersections.

Table 13: Queue Lengths in Excess of Capacity, Existing Plus Project Conditions

\#	Intersection	Movement	Peak Hour	Description
1	Mission Boulevard \& Calhoun Street	NBT/R	AM \& PM	This movement continues to spill back beyond the stopcontrolled intersections with Kellogg Avenue and Broadway Street. The addition of project trips in the AM peak hour is anticipated to increase the queve length by approximately eight car lengths. In the PM peak hour, the addition of project trips is expected to increase the queve by less than one car length.
		SBL	AM	This movement continues to spill back beyond the length of its exclusive turn lane and into the through lane. The addition of project trips is not anticipated to increase the queue length.
		SBT/R	AM \& PM	This movement continues to spill back beyond the stopcontrolled Jefferson Street intersection and the signalcontrolled entrance to Moreau Catholic High School. The addition of project trips is anticipated to increase the queve by approximately five car lengths in the AM peak hour and one car length in the PM peak hour.
2	Mission Boulevard \& Hancock Street	NBT/R	PM	This movement continues to spill back beyond the intersection with Tennyson Road. The addition of project trips is anticipated to increase the queue length by approximately one car length.
4	Whitman Street /Beatron Way \& Tennyson Road	NBL/T/R	AM	This movement continues to spill back beyond the adjacent uncontrolled intersection with Rochelle Avenue. The addition of project trips is anticipated to increase the queve by less than one car length.
		SBL	AM	This movement continues to spill back beyond the length of its exclusive turn lane and into the through lane. The addition of project trips is anticipated to increase the queve length by approximately one car length.
		SBR	AM \& PM	This movement spills back beyond the length of its exclusive turn lane, blocking access to the pocket bike lane. The addition of project trips is anticipated to increase the queue length by approximately one car length in the AM peak hour and less than one car length in the PM peak hour.
		EBL	AM \& PM	This movement continues to spill back beyond the length of its exclusive turn lane and into the through lane. The addition of project trips is anticipated to increase the queve by approximately one car length in the AM and PM peak hours.
		WBT	AM	This movement continues to spill back beyond stopcontrolled intersections with Oharron Drive and Pacific Street. The addition of project trips is anticipated to increase the queve length by approximately one car length.
		WBR	AM	With the addition of project trips, this movement spills back beyond the length of its exclusive turn lane, blocking access to the pocket bike lane.

\#	Intersection	Movement	Peak Hour	Description
5	East 12th Street / Dixon Street \& Tennyson Road	NBL	AM \& PM	This movement continues to spill back beyond the length of its exclusive turn lane and into the through lane. The addition of project trips is anticipated to increase the queve length by approximately one car length in the AM peak hour and less than one car length in the PM peak hour.
		EBL	AM	This movement continues to spill back beyond the length of its exclusive turn lane and into the through lane. The addition of project trips is anticipated to increase the queue by less than one car length.
		EBR	AM \& PM	This movement continues to spill back beyond the length of its exclusive turn lane, blocking access to the pocket bike lane. The addition of project trips is anticipated to increase the queue length by approximately one car length in the AM peak hour and less than one car length in the PM peak hour.
		WBT/R	AM \& PM	This movement continues to spill back beyond the stopcontrolled intersection with 13th Street. The addition of project trips is anticipated to increase the queve length by approximately one car length in the AM peak hour and less than one car length in the PM peak hour.
6	Mission Boulevard \& Tennyson Road	SBT	AM	This movement continues to spill back beyond the stopcontrolled intersection with Monticello Street. The addition of project trips is not anticipated to increase the queve length.
8	Mission Boulevard \& Valle Vista Avenue	SBT/R	AM	This movement continues to spill back beyond the stopcontrolled intersection with Mariners Court. The addition of project trips is anticipated to increase the queve length by approximately three car lengths.

AM(PM) - Traffic Volume
(FIOP) - Traftic Vay Stop
(sore)
$\stackrel{\text { All-Way St }}{ }$
-

- Traffic Signal

Section 6 - Public Transit, Pedestrian, and Bicycle Assessment

PUBLIC TRANSIT, PEDESTRIAN, AND BICYCLE ASSESSMENT

This section discussed potential project effects on public transit, pedestrians, and bicyclists.

PUBLIC TRANSIT ASSESSMENT

The Project is not expected to increase traffic levels at intersections serving local AC Transit buses to levels that would require improvements under the Existing Plus Project scenario. In addition, the project is not expected to degrade local access to bus stops along Mission Boulevard (such as the stops at the intersections with Tennyson Road and Hancock Street) which can be accessed via the local sidewalk network and existing facilities such as ADA curb ramps and crosswalks. There are no bus stops near the project or abutting the project driveways.

The project may increase the use of the nearby AC Transit bus stops along Mission Boulevard. While the bus stops at the intersection of Mission Boulevard \& Tennyson Road include amenities such as a bench and shelter, the bus stops at the intersection of Mission Boulevard and Hancock Street do not. Therefore, the property owner should coordinate with AC Transit to improve user amenities at the two AC Transit bus stops at the intersection of Mission Boulevard and Hancock Street.

PEDESTRIAN ASSESSMENT

As discussed in the Existing Network section, arterial and collector roadways in the study area have mostly complete sidewalk coverage, but there are many gaps along local residential roads, including those near the $16^{\text {th }}$ Street access points. Tennyson Road and Hancock Street provide access to the project site from Mission Boulevard and include sidewalks on both sides of the street. Marked, high-visibility continental crosswalks are provided at the signalized intersections of these two streets with Mission Boulevard. Within the residential neighborhood to the west of the project site and east of Mission Boulevard, curb ramps and marked crosswalks are not consistently present at stop-controlled intersections. In addition, there is no sidewalk on the eastern side of $16^{\text {th }}$ Street. At the project's primary vehicular access points (the East $16^{\text {th }}$ Street/Hancock Street and Site Access/Tennyson Road intersections) there are no marked crosswalks.

Students walking to the proposed school (on the southern portion of the project site) or residents accessing the affordable housing component from the south would generally access the site by walking east along Tennyson Road from Mission Boulevard. Vehicular access for pick-up and drop-off is provided on the eastern side of the school building from the site access road, but the project includes trail access between Tennyson Road and the school west of the access road for people walking, as shown in Figure 13. The trail connects to a sidewalk that allows for internal site access without the need to use the vehicular access driveway off Tennyson Road.

Residents or students accessing the project site from the northwest via $16^{\text {th }}$ Street would benefit from a proposed sidewalk on the east side of $16^{\text {th }}$ Street. However, other pedestrian amenities such as marked crosswalks are not present to facilitate pedestrian access to the project. In addition, given that residential vehicle trips would access the project via the $16^{\text {th }}$ Street driveways, the project is expected add vehicle trips on streets such as $16^{\text {th }}$ Street and Hancock Street, affecting local pedestrian conditions.

Pedestrian treatments should be considered at the project access points and within the study area to facilitate pedestrian access to the project site and generally improve pedestrian safety in the study area. Potential pedestrian-oriented treatments that could be considered as part of design review and conditions of approval could include:

- Ensure that the project driveways are designed for pedestrian visibility safety (sidewalks clearly delineated, improved visibility by minimizing bushes and large signs).
- Coordinate with the City of Hayward to install warning signage (such as caution signage for exiting vehicles) and continental crosswalks at Site Access/Tennyson Road intersection.
- Explore options to improve pedestrian accessibility west of the project site, including along $16^{\text {th }}$ Street and Hancock Street. Improvements can include marked crosswalks and bulbouts at the East $16^{\text {th }}$ Street/Hancock Street intersection.
- There is the opportunity to add yellow continental school crosswalks at the Tennyson Road/Mission Boulevard intersection.

BICYCLE ASSESSMENT

As discussed in the Existing Network section of this report, existing bikeways in the study area include Class II bike lanes in both directions along Tennyson Road. The Hayward BPMP includes planed Class IV separated bike lanes along Mission Boulevard and along Tennyson Road west of Mission Boulevard.

Bicyclists accessing the southern portion of the project site (primarily students accessing the school) can utilize the trail access off of Tennyson Road to avoid utilizing the project driveway off Tennyson Road. However, inbound bicyclists approaching from Mission Boulevard using the eastbound bike lanes may have difficulty turning into the project, especially due to the grade and lack of a turn pocket or other marked facility for crossing into the school. In addition, a substantial number of turning vehicles are being added to the Site Access/Tennyson Road intersection during peak hours. For bikes leaving westbound along Tennyson Road using the bike lane, downhill vehicle speeds combined with increased peak hour vehicle volumes and the bike lane being dropped for the 315 -foot right turn lane could result in an uncomfortable bicycling environment for students and other bicyclists.

Bicyclists accessing the northern portion of the project must utilize the project's $16^{\text {th }}$ Street driveways or dismount and use the sidewalks to access the project site. In addition, there are no designated bikeways on local residential streets such as $16^{\text {th }}$ Street and Hancock Street. The project will also add vehicular traffic to these roads, especially during peak hours.

Bicycle treatments should be considered at the project access points and within the study area to facilitate bicyclist access to the project site and generally improve bicyclist safety in the study area. Potential bicycle-oriented treatments that could be considered as part of design review and conditions of approval could include:

- Coordinate with the City of Hayward to install signage (such as bikeway signage and caution signage) and green conflict zone markings through the Site Access Road/Tennyson Road intersection.
- Consider implementing facilities to accommodate bicyclists (and pedestrians) crossing Tennyson Road to access the project site (e.g., marked north/south crosswalk at the Site Access Road/Tennyson Road intersection or a midblock location).
- Consider a treatment to improve downhill westbound bicycling conditions approaching the Mission Boulevard/Tennyson Road intersection. Note, Solutions for this location are limited by multiple constraints:
- A pocket bike lane between the through and right turn lanes may not be feasible due to the curb-to-curb right-of-way or to avoid offsetting the westbound through lane. The length of the pocket bike lane (more than 300 feet) could result in a high-stress situation with vehicles traveling on both sides of bicyclists for an extended period of time.
- A shared bike/right turn lane may be high-stress for children and other users due to the length of the right-turn lane and downhill vehicle speeds.
- Solutions may require shortening the westbound right-turn lane at the Mission Boulevard \& Tennyson Road intersection to reduce bicyclist stress.

Parcel Group 3 Entitlements Local Transportation Analysis Public Transit, Pedestrian, and Bicycle Assessment

- Consider installing bike routes with sharrows along residential roads such as Hancock Street and $16^{\text {th }}$ Street to facilitate bike access to and from the project. This could be combined with traffic calming strategies due to increased vehicle volumes (which will be discussed in a later chapter).

Figure 13: On-Site Pedestrian Facilities

Section 7 - Pick-Up and Drop-Off Analysis

STUDENT PICK-UP AND DROP-OFF ANALYSIS

This section provides an assessment of the proposed student pick-up and drop-off zone, including a determination if sufficient queuing area is provided for site access planning purposes.

The project site includes an internal circulation system to provide access for vehicles and pedestrians to the school and residential portions of the project, as well as pedestrian connectivity to Tennyson Road and $16^{\text {th }}$ Street. The student pick-up and drop-off plan is presented in

Figure 14. Please note, the narrative and analysis provided below references north/south/east/west directionality relative to this figure, which is rotated 90 degrees so that Tennyson Road is running north/south.

VEHICULAR ACCESS

The school would be primarily accessed from Tennyson Road via the eastern project driveway. The school may also technically be accessed from $16^{\text {th }}$ Street via a secondary access driveway and internal driveways that are primarily to provide access to the residential portion of the project, although that is not intended. The eastern driveway that will connect the school to Tennyson Road will have one 13 -foot wide travel lane in each direction and parallel curbside parking. The northern/westbound lane side of the road will provide 17 parallel parking spaces. The access driveway south of the traffic circle will have one lane in each direction with 5 parallel parking spaces on the east/northbound lane side of the road, and 4 perpendicular parking spaces at the end of the cul-de-sac.

PEDESTRIAN ACCESS

The school would have multiple entrances. The primary school entrance for the elementary school building will be located on the northwestern portion of the building by the eastern end of the proposed crosswalk south of the traffic circle. An additional entry will be located to the south near the cul-de-sac.

The early childhood center building would be accessed by the cul-de-sac area at the terminus of the access driveway.

Sidewalks will be constructed along both sides of the roads in the vicinity of the school. Sidewalks along north side of access road providing access from 17 parking spaces, connecting to/from the school via two crosswalks. Crosswalks would be provided on the west and south legs of the traffic circle. A trail from north of the school building would provide direct pedestrian access from the school area to Tennyson Road.

PARKING

The vicinity of the school will include 9 parking spaces that would be provided on the south driveway, 17 parking spaces on the northern driveway east of the traffic circle, and 18 dedicated parking spaces. A total of 44 dedicated parking spaces plus 6 shared parking spaces west of the traffic circle would be available for school parking. The parking spaces located along the north side of the internal road would be accessible via crosswalks.

DROP-OFF/PICK-UP AREAS

The plan includes drop-off and pick-up areas that would facilitate students to exit or enter vehicles on the passenger side to prevent students from crossing between vehicles in the drop-off/pick-up queue. Drop-off areas will be located west and north of the elementary school building. The west area would have a length of over 100 feet, which would be able to accommodate 5 vehicles, and the north area would have a length of 78 feet, which would accommodate 3 vehicles. Both drop-off areas would provide easy access to the school buildings. The kindergarten building does not have a pick-up and drop-off area, as parents normally park and walk their young children in kindergarten/early childhood grades to school.

VEHICULAR LOOP DRIVE STACKING

The school is anticipated to accommodate almost 400 students, 96 of which are in the early childhood programs. The school will generate up to 422 trips ($224 \mathrm{in} / 198$ out) in the AM peak hour during the student drop-off and 263 trips ($121 \mathrm{in} / 142$ out) in the mid-afternoon hour during the student pick-up.

The circulation would consist of two drop-off/pick-up paths to provide a single-lane drive stacking loop as follows:

- Early Childhood Student Drop-off/Pick-up: The vehicular path would consist of utilizing the south drive aisle to access the early childhood building and turn around at the cul-de-sac with a loop drive stacking length of 790 feet. The site plan envisions this path to use the 9 parking spaces for student drop-off/pick-up, so parents can park and walk their children to the early childhood building. Parents may also park at other parking spaces dedicated for the school.
- Elementary School Drop-off: The vehicular path would consist of utilizing the east-west main access driveway to access the northern entrance of the elementary school building, utilizing the traffic circle to turn around. This queue would have a loop drive stacking length of 365 feet. The site plan envisions this path to primarily use the pick-up/drop-off area north of the elementary school building, where students would load directly from the vehicles to the curb/sidewalk.

POTENTIAL ISSUES

Potential pick-up and drop-off issues have been identified as follows:

- Potential vehicular/pedestrian conflicts: The main school entrances are located in the northwest corner of the elementary school building, and the entrance on the eastern portion of the kindergarten building. Potential conflicts between vehicles and pedestrians may occur when pedestrians cross the internal access driveways. The primary locations where conflicts may occur are at the driveway north of the elementary school and the driveway south of the traffic circle. These driveways will also be the path for vehicles accessing the school drop-off and parking areas. To reduce conflicts and improve circulation for pedestrians and vehicles, pedestrians should be directed to only cross the streets at designated pedestrian facilities. Pedestrians should not cross driveways outside designated facilities.
- Parking and Maneuvering: The loop drive is single queve and does not provide a passing lane. Therefore, vehicles maneuvering in and out of the parking spaces located along the driveway loops will conflict with vehicles traveling in the queue. This may create friction especially during the student drop-off and pick-up periods.
- The drop-off area for the elementary school can only accommodate 3 vehicles. As the configuration is a single queve, parents that cannot stop at the drop-off area would either: (1) stop and block the single queve line and the traffic circle in close proximity, (2) drop-off at a nondesignated location, or (3) exit the internal driveway to make a U-turn to reenter the queue.
- The drop-off queue is in close proximity of the traffic circle and will likely block traffic in all directions.
- During student pick-up, it would be difficult to move the single queue as parents in the queue need to locate their children.
- The southernmost spaces at the end of the cul-de-sac on both sides would require substantial vehicle maneuvering. During student drop-off and pick-up times, it would be difficult to find gaps in the queue, essentially trapping these vehicles.
- It is not clear where the school buses and vans for special education students would be located and if it is feasible to separate vehicles from school buses.
- According to published research, elementary schools with a student population of less than 500 students usually have a loop drive stacking length ranging from 400 to 750 feet. Given the site's characteristics with a short drop-off area and the single queue it is anticipated the queue would be in the upper range, possibly reaching the Site Access Road leading to Tennyson Road.

RECOMMENDATIONS

Recommended improvements to pick-up/drop-off circulation are provided below.

- Install school area signage and pavement markings according to MUTCD standards.
- Relocate the northern drop-off area away from the traffic circle.
- Short-term parking spaces should be identified past the student loading area and near the building entrance.
- Block access to the residential area of the parking lot during student drop-off/pick-up
- Assign staff parking to the areas west of the traffic circle, leaving the parking spaces within the loop drive open for parents during the drop-off and pick-up times.
- At the designated drop-off areas north and west of the elementary school building, paint the curb white and mark it as "passenger loading during student drop-off and pick-up times." "No Parking" signs should be installed indicating the times of the day when parking is not allowed.
- Traffic cones and other channelizing devices can be used to minimize pedestrian/vehicles conflicts.
- Student safety patrols and loading supervisors should be well trained and wear reflective safety vests.
- Install signage to indicate that parking is not allowed during drop-off/pick-up times and drivers must remain in the vehicles. Signage should also direct kindergarten/early childhood and lower grade drop-off/pick-up to the southern drop-off/pick-up zones, and upper grade drop-off/pick-up to the northern drop-off/pickup zone. Kindergarten/early childhood students should be walked to the school buildings by staff during drop-off times, as opposed to parents parking and walking their students.
- The applicant for the school should prepare a traffic and parking management plan. The plan would identify the parking areas for staff, visitors, parking restrictions, management of the student drop-off/pick-up, locations of crossing guards, staff and monitors assisting with student drop-off/pick-up, and an advanced student identification system so students can be matched to their parents. The plan should be prepared for the satisfaction of City of Hayward Public Works staff and submitted prior to building occupancy permits. The plan should include process to reduce or eliminate the need for the parents to get out of the vehicle at drop-off locations to provide an efficient and safe drop-off and pick-up procedure. The plan should also include staggered dropoff schedules.
- The applicant should prepare a transportation demand management (TDM) plan to encourage carpooling, rideshare, and other modes and facilitate carpool matching for staff and students.

Figure 14: Student Pick-Up and Drop-Off Plan

Section 8 - Traffic Calming

TRAFFIC CALMING

The City of Hayward has expressed concerns regarding the potential for vehicles to divert to or pass through residential streets to local arterial and regional roads in the study area. Generally, pass-through vehicle concerns can be addressed with traffic calming measures to slow vehicles down to safer speeds.

- Examples of traffic calming measures can include:
- Narrowing roadways
- Adding on-street parking
- Installing a bike lane
- Adding curb extensions and bulbouts
- Adding bollards and planters
- Removing lanes
- Vertical deflection such as speed bumps, humps, or tables
- Horizontal deflection
- Lateral shift with a median island and curb extensions
- Lateral shift with a chicane and curb extensions
- Enforcement and education
- Speed cameras
- Vehicle activated speed signs
- Lowering speed limits

The driveways for the project's residential component are located on East $16^{\text {th }}$ Street. This could result in increased traffic on neighborhood streets in the area. Existing volumes and the anticipated project contribution are shown in Table 14.

Table 14: Anticipated Project Trip Contribution (Hancock Street and E. 16th Street)

Street	Peak Hour	Existing Volume	Project-Only Trips
East l6th Street (south of Hancock	AM	57	31
Street)	PM	79	38
Hancock Street (between Mission	AM	$235-334$	63
Boulevard and E. 16th Street)	PM	$137-241$	77

As shown in the table, it is anticipated that the project will increase traffic along East $16^{\text {th }}$ Street south of Hancock Street by approximately 50% during both peak hours. Vehicle trips will also be added to Hancock Street east of Mission Boulevard. Therefore, the project applicant should work with the City of Hayward to explore options for implementing traffic calming techniques along these streets. These measures can also support improved bicycle and pedestrian conditions in the neighborhood and access to the project site. Potential traffic calming techniques that could be applied to these streets include:

- Narrowing lanes
- Adding curb extensions and bulbouts
- Horizontal deflection

In addition, on-site restrictions should be put in place to prohibit access to/from the project's charter school component from the East $16^{\text {th }}$ Street driveways during peak periods of school pick-up and drop-off.

Section 9 - Circulation and Access

CIRCULATION AND ACCESS

This section provides an overview of site access and on-site circulation.

FIRE TRUCK AND WASTE MANAGEMENT TRUCK ACCESS

An analysis of the project driveways and internal site was prepared by the project team using AutoCAD to assess circulation and site access for fire trucks. The fire truck turning template is shown in Figure 15. As shown in the figure, a tandem axle ladder fire truck is able to navigate the project driveways and drive aisles.

The waste management access plan is shown in Figure 16. As shown in the figure, waste management trucks would utilize a one-way path of travel, entering from Tennyson Road and exiting through East $16^{\text {th }}$ Street. An AutoTurn template was not prepared for waste management vehicles. However, given that the fire truck templates represent the largest vehicle expected to enter and exit the site, it is expected that the site is navigable for waste management trucks.

PASSENGER VEHICLES

AutoTurn templates were not prepared for passenger vehicles, since the fire truck template represents the largest vehicle expected to enter and exit the site. Given the results of the truck turning template, it is expected that the driveway and drive aisles are sufficient to accommodate passenger vehicles. In addition, the exiting vehicle queves at the project driveways and at the Site Access Road/Tennyson Road intersections are not expected to exceed 25 feet; therefore, no conflict is expected between exiting queuing vehicles, parking spaces, and internal drive aisle intersections. In addition, a single outbound lane at each driveway and at the Site Access Road/Tennyson Road intersection is sufficient, especially since exiting vehicles are expected to primarily turn right to exit.

Due to the hilly terrain and uncontrolled intersections east of Mission Boulevard in the vicinity of the project site, sight distance was assessed at uncontrolled intersections and project driveways:

- The school driveway near Tennyson Road - for eastbound vehicles leaving the site
- The residential driveways on $16^{\text {th }}$ Street - for westbound vehicles leaving the site
- The intersection of East $16^{\text {th }}$ Street $\&$ Hancock Street - for vehicles at the eastbound stop-controlled approach
- The intersection of Site Access Road \& Tennyson Road - for southbound vehicles entering Tennyson Road

The line of sight for stop-controlled movements at these locations were analyzed to ensure that adequate sight distances are provided for vehicles to see both pedestrians in sidewalk areas and vehicles approaching the driveways. Line of sight was analyzed using standards and methodologies described in the American Association of State Highway and Transportation Officials (AASHTO) Geometric Design of Highways and Streets. AASHTO standards were used to develop departure sight triangles at each location that should be unobstructed for vehicles to provide sufficient view of approaching vehicles and pedestrians.

AASHTO recommends that the driver decision point of the sight triangle (the short side) should be 14.5 feet from the major road traveled way. However, where practical, AASHTO recommends increasing the distance to 18 feet. Given the presence of bike lanes and sidewalks along Tennyson Road, a decision point of 18 feet was assumed for the Site Access Road \& Tennyson Road intersection.

The following formula was used to calculate the necessary intersection sight distance:

$$
\text { ISD }=1.47 * V_{\text {major }} * \dagger_{\mathrm{g}}
$$

where:
ISD = intersection sight distance (length of the leg of sight distance triangle along major road) (ft)
$\mathrm{V}_{\text {major }}=$ design speed of major road (mph)
$t_{g}=$ time gap for minor road vehicle to enter the major road (s)
Assuming a passenger car time gap of 6.5 seconds (based on AASHTO) and speed limits of 15 mph on alleys and 25 mph on other roads, the intersection sight distances were calculated and recommended departure sight triangles are provided below.

- At the school driveway, 239 feet of sight distance is needed. No obstructions are present.
- For vehicles existing the residential driveways, 239 feet of sight distance is needed to the north of the driveway and 143 feet to the south. Obstructions consist of trees and parked cars (no buildings).
- At the East $16^{\text {th }}$ Street \& Hancock intersection, eastbound vehicles require 239 feet of sight distance in each direction. Obstructions consist of trees and parked cars (no buildings).
- At the Site Access Road \& Tennyson Road intersection, 239 feet of sight distance are needed in each direction. No obstructions are present.

Therefore, access points and intersections around the project site generally have acceptable sight distance, unobstructed by buildings. However, along $16^{\text {th }}$ Street, ample trees and on-street parking could potentially obstruct sight distance. Parking should be prohibited within close proximity of the driveways to improve visibility and sight distance.

There is an incline along Tennyson Road as well as limited visibility due to the roadway's curve and the hilly terrain to the east of the Site Access Road. Currently, the intersection provides full inbound and outbound access and is stop-controlled on the southbound approach. Vehicles traveling along Tennyson Road are not controlled; this includes westbound vehicles traveling downhill. There is the potential for sight issues and conflicts between vehicles taking a left into the project and vehicles traveling westbound downhill along Tennyson due to the grade crest. Furthermore, inbound vehicles may queue back along Tennyson Road's shared left/through lane until a gap form in downhill vehicles; vehicles continuing eastbound along Tennyson Road would have to navigate around these waiting vehicles. In order to improve visibility and safety at the school access point on Tennyson Road for eastbound and westbound vehicles, it is recommended that an inbound left turn lane be added along Tennyson Road at the Site Access Road. Tennyson Road is currently approximately 35 feet wide (with two vehicle lanes and two bike lanes) adjacent to the project. Adding an inbound turn lane and its taper would require widening Tennyson Road by approximately 11 feet.

PEDESTRIANS AND BICYCLISTS

Pedestrians can access the project site using sidewalks at the project driveways or a trail access from Tennyson Road. Pedestrians will be able to use a network of on-site walkways and crosswalks through the project site. In addition, recommended pedestrian-oriented improvements are detailed in preceding chapters of this report.

Bicyclists accessing the site must either use the $16^{\text {th }}$ Street driveways and sidewalks or the trail access from Tennyson Road. Once on site, bicyclists would need to dismount and use the internal pedestrian network. Recommended bicyclist-oriented improvements are detailed in preceding chapters of this report.

Figure 15: Fire Truck Access Plan

Figure 16: Waste Management Access Plan

Section 10 - Summary of Findings

SUMMARY OF FINDINGS AND RECOMMENDATIONS

The VMT Impact Assessment Memorandum previously determined that the project can be screened out of a detailed vehicle miles traveled (VMT) analysis under the City's Senate Bill 743-consistent VMT criteria.
Therefore, it was determined that the project would have a less-than-significant VMT impact under CEQA. No mitigation measures were identified.

Non-CEQA recommendations have been made in this report to address multimodal transportation conditions and to be incorporated as part of this project.

To address local bus transit accessibility, the property owner should:

- Coordinate with AC Transit to improve user amenities at the two AC Transit bus stops at the intersection of Mission Boulevard and Hancock Street.

To address pedestrian conditions and accessibility, potential pedestrian-oriented treatments that could be considered as part of design review and conditions of approval include:

- Ensure that the project driveways are designed for pedestrian visibility safety (sidewalks clearly delineated, improved visibility by minimizing bushes and large signs).
- Coordinate with the City of Hayward to install warning signage (such as caution signage for exiting vehicles) and continental crosswalks at Site Access/Tennyson Road intersection.
- Explore options to improve pedestrian accessibility west of the project site, including along $16^{\text {th }}$ Street and Hancock Street. Improvements can include marked crosswalks and bulbouts at the East $16^{\text {th }}$ Street/Hancock Street intersection.
- There is the opportunity to add yellow continental school crosswalks at the Tennyson Road/Mission Boulevard intersection

To address bicycling conditions and accessibility, potential bicycle-oriented treatments that could be considered as part of design review and conditions of approval include:

- Coordinate with the City of Hayward to install signage (such as bikeway signage and caution signage) and green conflict zone markings through the Site Access Road/Tennyson Road intersection.
- Consider implementing facilities to accommodate bicyclists (and pedestrians) crossing Tennyson Road to access the project site (e.g., marked north/south crosswalk at the Site Access Road/Tennyson Road intersection or a midblock location).
- Consider a treatment to improve downhill westbound bicycling conditions approaching the Mission Boulevard/Tennyson Road intersection. Note, Solutions for this location are limited by multiple constraints:
- A pocket bike lane between the through and right turn lanes may not be feasible due to the curb-to-curb right-of-way or to avoid offsetting the westbound through lane. The length of the pocket bike lane (more than 300 feet) could result in a high-stress situation with vehicles traveling on both sides of bicyclists for an extended period of time.
- A shared bike/right turn lane may be high-stress for children and other users due to the length of the right-turn lane and downhill vehicle speeds.
- Solutions may require shortening the westbound right-turn lane at the Mission Boulevard \& Tennyson Road intersection to reduce bicyclist stress.
- Consider installing bike routes with sharrows along residential roads such as Hancock Street and $16^{\text {th }}$ Street to facilitate bike access to and from the project. This could be combined with traffic calming strategies due to increased vehicle volumes.

Recommendations to improve student pick-up/drop-off circulation consist of the following:

- Install school area signage and pavement markings according to MUTCD standards.
- Relocate the northern drop-off area away from the traffic circle.
- Short-term parking spaces should be identified past the student loading area and near the building entrance.
- Block access to the residential area of the parking lot during student drop-off/pick-up
- Assign staff parking to the areas west of the traffic circle, leaving the parking spaces within the loop drive open for parents during the drop-off and pick-up times.
- At the designated drop-off areas north and west of the elementary school building, paint the curb white and mark it as "passenger loading during student drop-off and pick-up times." "No Parking" signs should be installed indicating the times of the day when parking is not allowed.
- Traffic cones and other channelizing devices can be used to minimize pedestrian/vehicles conflicts.
- Student safety patrols and loading supervisors should be well trained and wear reflective safety vests.
- Install signage to indicate that parking is not allowed during drop-off/pick-up times and drivers must remain in the vehicles. Signage should also direct kindergarten/early childhood and lower grade drop-off/pick-up to the southern drop-off/pick-up zones, and upper grade drop-off/pick-up to the northern drop-off/pickup zone. Kindergarten/early childhood students should be walked to the school buildings by staff during drop-off times, as opposed to parents parking and walking their students.
- The applicant for the school should prepare a traffic and parking management plan. The plan would identify the parking areas for staff, visitors, parking restrictions, management of the student drop-off/pick-up, locations of crossing guards, staff and monitors assisting with student drop-off/pick-up, and an advanced student identification system so students can be matched to their parents. The plan should be prepared for the satisfaction of City of Hayward Public Works staff and submitted prior to building occupancy permits. The plan should include process to reduce or eliminate the need for the parents to get out of the vehicle at drop-off locations to provide an efficient and safe drop-off and pick-up procedure. The plan should also include staggered dropoff schedules.
- The applicant should prepare a transportation demand management (TDM) plan to encourage carpooling, rideshare, and other modes and facilitate carpool matching for staff and students.

Given the anticipated increase in traffic volumes on local residential streets such as $16^{\text {th }}$ Street and Hancock Street, the project applicant should work with the City of Hayward to explore options for implementing traffic calming techniques along those streets. These measures can also support improved bicycle and pedestrian conditions in the neighborhood and access to the project site. Potential traffic calming techniques that could be applied to these streets include:

- Narrowing lanes
- Adding curb extensions and bulbouts
- Horizontal deflection
- On-site restrictions should be put in place to prohibit access to/from the project's charter school component from the East $16^{\text {th }}$ Street driveways during peak periods of school pick-up and drop-off.

Recommendations to improve circulation and access are as follows:

- Along $16^{\text {th }}$ Street, ample trees and on-street parking could potentially obstruct driveway sight distance. Parking should be prohibited within close proximity of the driveways to improve visibility and sight distance.
- In order to improve visibility and safety at the school access point on Tennyson Road for eastbound and westbound vehicles, it is recommended that an inbound left turn lane be added along Tennyson Road at the Site Access Road. Tennyson Road is currently approximately 35 feet wide (with two vehicle lanes and two bike lanes) adjacent to the project. Adding an inbound turn lane and its taper would require widening Tennyson Road by approximately 11 feet.

Appendix 1 - Traffic Counts and COVID-19 Adjustments

Peak-Hour: 7:15 AM -- 8:15 AM
Peak 15-Min: 7:45 AM -- 8:00 AM

15-Min Count Period Beginning At	2. Mission Blvd (Northbound)				2. Mission Blvd (Southbound)				Calhoun St (Eastbound)				Calhoun St (Westbound)				Total	Hourly Totals
	Left	Thru	Right	U														
7:00 AM	0	220	3	0	5	384	0	6	0	1	0	0	10	0	3	0	632	
7:15 AM	0	242	11	2	6	439	0	18	0	0	0	0	12	0	2	0	732	
7:30 AM	0	314	24	0	8	401	0	20	0	0	0	0	21	0	2	0	790	
7:45 AM	0	374	24	2	21	387	0	12	0	0	0	0	45	0	13	0	878	3032
8:00 AM	1	263	31	4	32	363	0	22	0	0	0	0	60	0	5	0	781	3181
8:15 AM	0	285	0	2	2	345	0	31	0	0	0	0	11	0	8	0	684	3133
8:30 AM	0	266	1	3	5	309	0	3	0	0	0	0	6	0	2	0	595	2938
8:45 AM	0	250	1	1	3	284	0	8	0	0	0	0	2	0	3	0	552	2612
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U														
All Vehicles	0	1496	96	8	84	1548	0	48	0	0	0	0	180	0	52	0		12
Heavy Trucks Buses	0	52	0		0	32	0		0	0	0		0	0	0			4
Pedestrians		4				16				16				0				6
Bicycles Scooters	0	4	0		0	0	0		0	0	0		0	0	0			4

Comments:

Peak-Hour: 7:15 AM -- 8:15 AM
Peak 15-Min: 8:00 AM -- 8:15 AM

15-Min Count Period Beginning At	9. Main Entry Access Rd (Northbound)				9. Main Entry Access Rd (Southbound)				Tennyson Rd (Eastbound)				Tennyson Rd (Westbound)				Total	Hourly Totals
	Left	Thru	Right	U														
7:00 AM	0	0	0	0	0	0	0	0	0	5	0	0	0	2	0	0	7	
7:15 AM	0	0	0	0	0	0	0	0	0	7	0	0	0	6	0	0	13	
7:30 AM	0	0	0	0	0	0	0	0	0	7	0	0	0	8	0	0	15	
7:45 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	10	0	0	16	51
8:00 AM	0	0	0	0	0	0	0	0	0	13	0	0	0	16	0	0	29	73
8:15 AM	0	0	0	0	0	0	0	0	0	8	0	0	0	5	0	0	13	73
8:30 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	5	0	0	8	66
8:45 AM	0	0	0	0	0	0	0	0	0	5	0	0	0	7	0	0	12	62
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U														
All Vehicles	0	0	0	0	0	0	0	0	0	52	0	0	0	64	0	0		6
Heavy Trucks Buses	0	0	0		0	0	0		0	0	0		0	8	0			8
Pedestrians		0				0				0				0				0
Bicycles Scooters	0	0	0		0	0	0		0	0	0		0	0	0			0

Comments:

Peak-Hour: 4:15 PM -- 5:15 PM
Peak 15-Min: 5:00 PM -- 5:15 PM

15-Min Count Period Beginning At	9. Main Entry Access Rd (Northbound)				9. Main Entry Access Rd (Southbound)				Tennyson Rd (Eastbound)				Tennyson Rd (Westbound)				Total	Hourly Totals
	Left	Thru	Right	U														
4:00 PM	0	0	0	0	0	0	0	0	0	7	0	0	0	11	0	0	18	
4:15 PM	0	0	0	0	0	0	0	0	0	9	0	0	0	4	0	0	13	
4:30 PM	0	0	0	0	0	0	0	0	0	5	0	0	0	12	0	0	17	
4:45 PM	0	0	0	0	0	0	0	0	0	10	0	0	0	7	0	0	17	65
5:00 PM	0	0	0	0	0	0	0	0	0	10	0	0	0	11	0	0	21	68
5:15 PM	0	0	0	0	0	0	0	0	0	7	0	0	0	2	0	0	9	64
5:30 PM	0	0	0	0	0	0	0	0	0	8	0	0	0	4	0	0	12	59
5:45 PM	0	0	0	0	0	0	0	0	0	6	0	0	0	9	0	0	15	57
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U														
All Vehicles	0	0	0	0	0	0	0	0	0	40	0	0	0	44	0	0		4
Heavy Trucks Buses	0	0	0		0	0	0		0	0	0		0	4	0			4
Pedestrians		0				4				0				0				4
Bicycles Scooters	0	0	0		0	0	0		0	0	0		0	0	0			0

Comments:

Adjusted AM	AM Turning Mo	ent Counts - Ve	Volumes											
Intersection	ns \#6 and \#8 fron	previous projec	ith data from	m 2018 and	2019-	other int	sections us	d March	20 coun	with 15\%	crease in	olumes		
ID	N -S STREET	E-W STREET	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
1	Mission Blvd	Calhoun St	10	1372	104	160	1829	0	0	0	0	159	0	25
2	Mission Blvd	Hancock St	15	1446	85	28	1902	24	85	22	6	125	39	35
3	E 16th St	Hancock St	36	8	0	0	5	100	91	0	8	0	0	0
4	Whitman St	Tennyson Rd	77	32	24	216	6	485	323	854	59	8	652	208
5	E 12th St	Tennyson Rd	214	32	112	10	58	139	138	593	335	94	451	5
6	Mission Blvd	Tennyson Rd	196	1287	0	8	1657	239	329	3	248	7	5	1
7	Site Access	Tennyson Rd	0	0	0	0	0	0	0	39	0	0	45	0
	Mission Blvd	Valle Vista Ave	71	1374	0	0	1912	39	16	0	30	0	0	0

Adjusted PM Turning Movement Counts - Vehicle Volumes
Intersections \#6 and \#8 from previous projects with data from 2018 and 2019 - all other intersections used March 2020 counts with 5\% increase in volumes

ID	N-S STREET	E-W STREET	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
1	Mission Blvd	Calhoun St	14	2043	12	74	1567	0	0	0	2	56	0	32
2	Mission Blvd	Hancock St	27	2006	36	69	1576	23	64	24	19	72	13	27
3	E 16th St	Hancock St	23	4	0	0	3	40	25	0	49	0	0	
4	Whitman St	Tennyson Rd	29	8	7	93	8	265	455	834	42	14	753	155
5	E 12th St	Tennyson Rd	265	62	86	4	16	71	104	563	227	78	594	
6	Mission Blvd	Tennyson Rd	380	1695	1	32	1198	328	352	4	248	9	17	
7	Site Access	Tennyson Rd	0	0	0	0	0	0	0	36	0	0	36	
8	Mission Blvd	Valle Vista Ave	41	2035	0	0	1417	40	22	0	35	0	0	

Appendix 2 -

Existing Level of Service, Queuing, and Peak Hour Traffic Signal Warrants Worksheets

1: Mission Boulevard \& Driveway/Calhoun Street

		4			$\frac{1}{1}$
Lane Group	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	202	11	1622	176	2010
v/c Ratio	0.77	0.13	0.71	0.73	0.72
Control Delay	56.6	52.4	17.5	77.2	11.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	56.6	52.4	17.5	77.2	11.2
Queue Length 50th (ft)	117	10	423	161	331
Queue Length 95th (ft)	196	m14	374	234	778
Internal Link Dist (ft)	729		1333		1909
Turn Bay Length (ft)		90		275	
Base Capacity (vph)	413	83	2277	275	2781
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.49	0.13	0.71	0.64	0.72
Intersection Summary					
m Volume for 95th perc	ueue	metered	y upst	m sig	

2: Mission Boulevard \& Hancock Street

	\rightarrow		4	\dagger		\downarrow
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	133	234	18	1801	33	2266
v/c Ratio	0.55	0.86	0.25	0.74	0.39	0.90
Control Delay	59.8	82.1	73.6	21.9	84.4	19.8
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0
Total Delay	59.8	82.1	73.6	22.2	84.4	19.8
Queue Length 50th (tt)	110	205	15	541	29	868
Queue Length 95th (ft)	167	282	m39	195	m47	\#488
Internal Link Dist (tt)	518	789		1040		1333
Turn Bay Length (ft)			240		200	
Base Capacity (vph)	280	314	71	2422	87	2506
Starvation Cap Reductn	0	0	0	133	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.47	0.75	0.25	0.79	0.38	0.90
Intersection Summary						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.m Volume for 95 th percentile queue is metered by upstream signal.						

	4	\rightarrow		7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			¢		${ }^{4}$	性		\%	性	
Traffic Volume (veh/h)	85	22	6	125	39	35	15	1446	85	28	1902	24
Future Volume (veh/h)	85	22	0	125	39	35	15	1446	85	28	1902	24
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	0.99		0.98	1.00		0.97	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1900	1900	1870	1900	1856	1781	1856	1841	1841	1856	1900
Adj Flow Rate, veh/h	100	26	7	147	46	41	18	1701	100	33	2238	28
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, \%	1	0	0	2	0	3	8	3	4	4	3	0
Cap, veh/h	217	53	13	212	54	48	36	2373	138	54	2535	32
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.04	1.00	1.00	0.04	0.95	0.95
Sat Flow, veh/h	976	300	71	966	302	269	1697	3379	197	1753	3563	44
Grp Volume(v), veh/h	133	0	0	234	0	0	18	880	921	33	1104	1162
Grp Sat Flow(s),veh/h/ln	1347	0	0	1538	0	0	1697	1763	1813	1753	1763	1845
Q Serve(g_s), s	0.0	0.0	0.0	8.1	0.0	0.0	1.5	0.0	0.0	2.7	29.1	30.2
Cycle Q Clear (g_c), s	13.0	0.0	0.0	21.1	0.0	0.0	1.5	0.0	0.0	2.7	29.1	30.2
Prop In Lane	0.75		0.05	0.63		0.18	1.00		0.11	1.00		0.02
Lane Grp Cap(c), veh/h	282	0	0	313	0	0	36	1238	1273	54	1254	1312
V/C Ratio(X)	0.47	0.00	0.00	0.75	0.00	0.00	0.50	0.71	0.72	0.62	0.88	0.89
Avail Cap(c_a), veh/h	347	0	0	381	0	0	71	1238	1273	85	1254	1312
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.33	1.33	1.33
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	0.00	0.87	0.87	0.87	0.62	0.62	0.62
Uniform Delay (d), s/veh	54.0	0.0	0.0	57.3	0.0	0.0	68.2	0.0	0.0	68.2	1.9	1.9
Incr Delay (d2), s/veh	1.2	0.0	0.0	6.4	0.0	0.0	8.8	3.0	3.1	7.0	5.9	5.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.6	0.0	0.0	8.9	0.0	0.0	0.7	1.0	1.1	1.3	4.0	4.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	55.2	0.0	0.0	63.7	0.0	0.0	77.0	3.0	3.1	75.2	7.8	7.8
LnGrp LOS	E	A	A	E	A	A	E	A	A	E	A	A
Approach Vol, veh/h		133			234			1819			2299	
Approach Delay, s/veh		55.2			63.7			3.8			8.8	
Approach LOS		E			E			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	8.4	106.1		29.5	7.1	107.4		29.5				
Change Period ($\mathrm{Y}+\mathrm{Rc} \mathrm{c}$, s	4.0	5.0		4.0	4.0	5.0		4.0				
Max Green Setting (Gmax), s	7.0	92.0		32.0	6.0	93.0		32.0				
Max Q Clear Time (g_c+11), s	4.7	2.0		15.0	3.5	32.2		23.1				
Green Ext Time (p_c), s	0.0	26.7		0.6	0.0	39.7		0.9				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			11.0									
			B									

Intersection						
Int Delay, s/veh	5.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	a	
Traffic Vol, veh/h	91	8	36	8	5	100
Future Vol, veh/h	91	8	36	8	5	100
Conflicting Peds, \#/hr	7	1	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	59	59	59	59	59	59
Heavy Vehicles, \%	1	0	0	0	0	5
Mvmt Flow	154	14	61	14	8	169

4: Beaton Way/Whitman Street \& Tennyson Road

	$\stackrel{ }{*}$	\rightarrow	7	7	\checkmark	4	\dagger		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	363	960	66	9	733	234	150	243	7	545
v/c Ratio	0.81	0.46	0.07	0.07	0.65	0.42	0.39	0.82	0.01	0.66
Control Delay	49.9	11.5	4.0	48.5	29.7	11.2	31.1	55.5	27.8	17.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.9	11.5	4.0	48.5	29.7	11.2	31.1	55.5	27.8	17.2
Queue Length 50th (t)	205	145	3	5	201	32	69	136	3	171
Queue Length 95th (ft)	\#410	264	24	23	271	94	139	\#280	15	331
Internal Link Dist (ft)		470			1481		548		469	
Turn Bay Length (t)	175		100	90		100		100		110
Base Capacity (vph)	508	2149	937	514	1745	771	496	390	649	882
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.45	0.07	0.02	0.42	0.30	0.30	0.62	0.01	0.62
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.										

	4	\rightarrow	\%	7		4	4	4	7	-	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个4	"	\%	个4	\%		\$		\%	\uparrow	F
Traffic Volume (veh/h)	323	854	59	-	652	208	77	32	24	216	6	485
Future Volume (veh/h)	323	854	59	8	652	208	77	32	24	216	6	485
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.92	1.00		0.88	0.95		0.88	0.92		0.89
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1826	1870	1900	1811	1885	1856	1900	1900	1885	1900	1870
Adj Flow Rate, veh/h	363	960	66	9	733	234	87	36	27	243	7	545
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, \%	,	5	2	0	6	1	3	0	0	1	0	2
Cap, veh/h	395	1911	802	24	1185	483	230	93	58	428	570	772
Arrive On Green	0.22	0.55	0.55	0.01	0.34	0.34	0.30	0.30	0.30	0.30	0.30	0.30
Sat Flow, veh/h	1795	3469	1456	1810	3441	1402	578	310	195	1239	1900	1414
Grp Volume(v), veh/h	363	960	66	9	733	234	150	0	0	243	7	545
Grp Sat Flow(s),veh/h/ln	1795	1735	1456	1810	1721	1402	1083	0	0	1239	1900	1414
Q Serve(g_s), s	19.8	17.2	2.1	0.5	17.8	13.1	9.1	0.0	0.0	8.1	0.3	30.0
Cycle Q Clear (g_c), s	19.8	17.2	2.1	0.5	17.8	13.1	10.5	0.0	0.0	18.6	0.3	30.0
Prop In Lane	1.00		1.00	1.00		1.00	0.58		0.18	1.00		1.00
Lane Grp Cap(c), veh/h	395	1911	802	24	1185	483	382	0	0	428	570	772
VIC Ratio(X)	0.92	0.50	0.08	0.37	0.62	0.48	0.39	0.00	0.00	0.57	0.01	0.71
Avail Cap(c_a), veh/h	449	1911	802	452	1548	631	382	0	0	428	570	772
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.2	14.0	10.6	48.9	27.3	25.8	27.9	0.0	0.0	31.3	24.6	18.8
Incr Delay (d2), s/veh	21.3	0.7	0.2	3.6	1.9	2.7	0.2	0.0	0.0	1.1	0.0	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	10.8	6.4	0.7	0.2	7.6	4.7	2.9	0.0	0.0	5.3	0.1	10.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	59.5	14.7	10.7	52.5	29.2	28.5	28.1	0.0	0.0	32.4	24.6	21.3
LnGrp LOS	E	B	B	D	C	C	C	A	A	C	C	C
Approach Vol, veh/h		1389			976			150			795	
Approach Delay, s/veh		26.2			29.3			28.1			24.7	
Approach LOS		C			C			C			C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	5.3	60.1		34.6	26.0	39.4		34.6				
Change Period ($Y+R \mathrm{c}$), s	4.0	5.0		4.6	4.0	5.0		4.6				
Max Green Setting (Gmax), s	25.0	45.0		30.0	25.0	45.0		30.0				
Max Q Clear Time (g_c+1), s	2.5	19.2		32.0	21.8	19.8		12.5				
Green Ext Time (p_c), s	0.0	16.0		0.0	0.2	14.7		0.8				
Intersection Summary												
HCM 6th Ctrr Delay			26.8									
HCM 6th LOS			C									

Notes

User approved pedestrian interval to be less than phase max green.

5: Dixon Street/E 12th Street \& Tennyson Road

	\rangle	\rightarrow	7	\dagger	4	4	\uparrow	$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	160	690	390	109	530	249	167	78	162
v/c Ratio	0.54	0.63	0.62	0.46	0.52	0.86	0.47	0.69	0.27
Control Delay	42.6	29.1	15.5	43.8	28.8	68.0	17.3	70.7	3.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.6	29.1	15.5	43.8	28.8	68.0	17.3	70.7	3.9
Queue Length 50th (ft)	84	173	74	57	130	139	22	42	3
Queue Length 95th (ft)	151	234	160	114	187	\#314	83	\#130	28
Internal Link Dist (ft)		1481			525		495	553	
Turn Bay Length (tt)	125		80	130		100			100
Base Capacity (vph)	494	1729	863	462	1726	288	359	113	765
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.40	0.45	0.24	0.31	0.86	0.47	0.69	0.21
Intersection Summary									
\# 95th percentile volume exceeds capacity, queue may be longer.									

Notes
User approved pedestrian interval to be less than phase max green.

6: Mission Boulevard \& Tennyson Road

	\rangle	\rightarrow			4	4	\dagger		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	370	3	279	14	1	220	1446	9	1862	269
v/c Ratio	0.67	0.01	0.58	0.09	0.00	0.61	0.43	0.12	0.67	0.30
Control Delay	62.3	46.0	10.2	56.6	0.0	68.7	15.8	60.6	30.9	17.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.3	46.0	10.2	56.6	0.0	68.7	15.8	60.6	30.9	17.1
Queue Length 50th (t)	171	2	0	13	0	102	193	8	382	77
Queue Length 95th (ft)	205	11	72	30	0	\#201	485	m10	\#757	m128
Internal Link Dist (t)		525		1121			1386		1040	
Turn Bay Length (ft)	335		225		315	520		230		210
Base Capacity (vph)	771	435	564	423	426	358	3383	73	2793	907
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.01	0.49	0.03	0.00	0.61	0.43	0.12	0.67	0.30
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.										
Queue shown is maximum after two cycles.										
m Volume for 95 th percentile queue is metered by upstream signal.										

	4	\rightarrow		\checkmark			4	4	p		$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7} 1$	4	「		\uparrow	「	${ }^{4} 1$	恌		${ }^{7}$	444	「
Traffic Volume（veh／h）	329	3	248	7	5	1	196	1287	0	8	1657	239
Future Volume（veh／h）	329	3	248	7	5	1	196	1287	0	8	1657	239
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.96	1.00		1.00	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1841	1900	1841	1900	1900	1900	1811	1856	1900	1811	1870	1856
Adj Flow Rate，veh／h	370	3	279	8	6	1	220	1446	0	9	1862	269
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh，\％	4	0	4	0	0	0	6	3	0	6	2	3
Cap，veh／h	688	384	313	45	34	66	209	3126	0	22	2896	876
Arrive On Green	0.20	0.20	0.20	0.04	0.04	0.04	0.06	0.62	0.00	0.03	1.00	1.00
Sat Flow，veh／h	3401	1900	1546	1056	792	1543	3346	5233	0	1725	5106	1545
Grp Volume（v），veh／h	370	3	279	14	0	1	220	1446	0	9	1862	269
Grp Sat Flow（s），veh／h／ln	1700	1900	1546	1847	0	1543	1673	1689	0	1725	1702	1545
Q Serve（g＿s），s	14.0	0.2	25.3	1.1	0.0	0.1	9.0	22.0	0.0	0.7	0.0	0.0
Cycle Q Clear（g＿c），s	14.0	0.2	25.3	1.1	0.0	0.1	9.0	22.0	0.0	0.7	0.0	0.0
Prop In Lane	1.00		1.00	0.57		1.00	1.00		0.00	1.00		1.00
Lane Grp Cap（c），veh／h	688	384	313	79	0	66	209	3126	0	22	2896	876
V／C Ratio（X）	0.54	0.01	0.89	0.18	0.00	0.02	1.05	0.46	0.00	0.41	0.64	0.31
Avail Cap（c＿a），veh／h	779	435	354	423	0	354	209	3126	0	72	2896	876
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（I）	0.74	0.74	0.74	1.00	0.00	1.00	0.87	0.87	0.00	0.31	0.31	0.31
Uniform Delay（d），s／veh	51.4	45.9	55.9	66.4	0.0	66.0	67.5	14.8	0.0	69.7	0.0	0.0
Incr Delay（d2），s／veh	0.5	0.0	17.3	1.0	0.0	0.1	72.4	0.4	0.0	3.9	0.3	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	6.1	0.1	11.4	0.5	0.0	0.0	5.9	8.2	0.0	0.3	0.1	0.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	51.9	45.9	73.2	67.5	0.0	66.1	139.9	15.2	0.0	73.5	0.3	0.3
LnGrp LOS	D	D	E	E	A	E	F	B	A	E	A	A
Approach Vol，veh／h		652			15			1666			2140	
Approach Delay，s／veh		61.0			67.4			31.7			0.6	
Approach LOS		E			E			C			A	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（G＋Y＋Rc），s	13.0	86.7		10.2	5.8	93.8		34.1				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	4.0	5.0		4.0	4.0	5.0		5.0				
Max Green Setting（Gmax），s	9.0	51.0		33.0	6.0	54.0		33.0				
Max Q Clear Time（g＿c＋11），s	11.0	2.0		3.1	2.7	24.0		27.3				
Green Ext Time（p＿c），s	0.0	25.1		0.0	0.0	12.3		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			21.2									
HCM 6th LOS			C									

7: Tennyson Road \& Main Entry Access Road

Intersection							
Int Delay, s/veh 0							
Movement EBL	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		${ }_{*} 1$	\dagger		*		
Traffic Vol, veh/h	0	39	45	0	0	0	
Future Vol, veh/h	0	39	45	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	63	63	63	63	63	63	
Heavy Vehicles, \%	0	6	10	0	0	0	
Mvmt Flow	0	62	71	0	0	0	

8: Mission Boulevard \& Valle Vista

	4	4	\dagger	\downarrow
Lane Group	EBL	NBL	NBT	SBT
Lane Group Flow (vph)	52	80	1544	2192
v/c Ratio	0.47	0.67	0.49	0.78
Control Delay	43.1	91.0	2.3	10.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	43.1	91.0	2.3	10.7
Queue Length 50th (ft)	17	73	103	580
Queue Length 95th (tt)	60	\#170	171	641
Internal Link Dist (ft)	364		816	1386
Turn Bay Length (ft)		225		
Base Capacity (vph)	323	120	3168	2828
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.16	0.67	0.49	0.78
Intersection Summary				
\# 95th percentile volume exceeds capacity, queue may be longerQueue shown is maximum after two cycles.				

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	1/19/2021		
e:	H:\<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal		
Intersection: Scenario:	Warrants\「Existine intersection 3 AM.xlsmlWar \#3 - 3. East 16th Street \& Hancock Street		
	Existing AM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes

Major Street		Minor Street	
NB	SB	EB	WB
44	106	99	0
42	100	94	0
41	99	92	0
39	95	88	0
39	93	87	0
39	93	87	0
37	89	83	0
36	88	82	0
35	85	79	0
33	79	74	0
32	76	71	0
31	75	70	0
30	72	67	0
26	62	58	0
21	49	46	0
19	47	44	0
13	33	30	0
11	27	25	0
6	14	13	0
4	10	9	0
4	8	8	0
2	6	5	0
1	3	3	0
1	3	3	0

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	1/19/2021		
e:	H: \<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal		
Intersection: Scenario:	Warrants\IExisting intersection 3 AM.xlsmlWar \#3 7. Site Access Road \& Tennyson Road		
	Existing AM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Begin	End	EB	WB	NB
7:15 AM $8: 15$ AM	39	45	0	SB
2nd Highest Hour	37	43	0	0
3rd Highest Hour	36	42	0	0
4th Highest Hour	35	40	0	0
5th Highest Hour	34	40	0	0
6th Highest Hour	34	40	0	0
7th Highest Hour	33	38	0	0
8th Highest Hour	32	37	0	0
9th Highest Hour	31	36	0	0
10th Highest Hour	29	34	0	0
11th Highest Hour	28	32	0	0
12th Highest Hour	28	32	0	0
13th Highest Hour	27	31	0	0
14th Highest Hour	23	26	0	0
15th Highest Hour	18	21	0	0
16th Highest Hour	17	20	0	0
17th Highest Hour	12	14	0	0
18th Highest Hour	10	11	0	0
19th Highest Hour	5	6	0	0
20th Highest Hour	4	4	0	0
21st Highest Hour	3	4	0	0
22nd Highest Hour	2	2	0	0
23rd Highest Hour	1	1	0	0
24th Highest Hour	1	1	0	0

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

1: Mission Boulevard \& Driveway/Calhoun Street

	\cdots		4		($\frac{1}{\dagger}$
Lane Group	EBR	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	2	94	15	2210	80	1685
v/c Ratio	0.01	0.61	0.18	0.81	0.55	0.56
Control Delay	0.0	54.6	61.3	8.8	80.9	5.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	0.0	54.6	61.3	8.8	80.9	5.5
Queue Length 50th (ft)	0	50	15	251	78	153
Queue Length 95th (ft)	0	109	m19	380	133	421
Internal Link Dist (ft)		729		1334		1909
Turn Bay Length (ft)			90		275	
Base Capacity (vph)	385	354	82	2732	150	3007
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.27	0.18	0.81	0.53	0.56
Intersection Summary						
m Volume for 95th percentile queue is metered by upstream signal.						

	\rightarrow		4	\dagger		\downarrow
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	111	115	28	2105	71	1649
v/c Ratio	0.69	0.74	0.30	0.81	0.52	0.60
Control Delay	82.0	85.8	90.5	21.7	84.1	6.5
Queue Delay	0.0	0.0	0.0	1.6	0.0	0.0
Total Delay	82.0	85.8	90.5	23.3	84.1	6.5
Queue Length 50th (tt)	102	103	25	886	72	210
Queue Length 95th (ft)	164	168	m57	1242	129	213
Internal Link Dist (ft)	518	789		1040		1334
Turn Bay Length (ft)			240		200	
Base Capacity (vph)	290	278	94	2586	141	2764
Starvation Cap Reductn	0	0	0	295	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.38	0.41	0.30	0.92	0.50	0.60
Intersection Summary						

	4	\rightarrow	\cdots	7		4	4	4	p		\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\leqslant			\&		\%	中 ${ }^{\text {a }}$		\%	中 ${ }^{\text {a }}$	
Traffic Volume (veh/h)	64	24	19	72	13	27	27	2006	36	69	1576	23
Future Volume (veh/h)	64	24	19	72	13	27	27	2006	36	69	1576	23
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.97	0.99		0.98	1.00		0.96	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1841	1900	1885	1900	1900	1900	1885	1900	1900	1885	1900
Adj Flow Rate, veh/h	66	25	20	74	13	28	28	2068	37	71	1625	24
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	2	4	0	1	0	0	0	1	0	0	1	0
Cap, veh/h	135	50	32	145	29	43	49	2672	48	89	2761	41
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.05	1.00	1.00	0.10	1.00	1.00
Sat Flow, veh/h	793	405	263	864	232	353	1810	3597	64	1810	3611	53
Grp Volume(v), veh/h	111	0	0	115	0	0	28	1026	1079	71	805	844
Grp Sat Flow(s), veh/h/ln	1461	0	0	1449	0	0	1810	1791	1870	1810	1791	1873
Q Serve(g_s), s	0.0	0.0	0.0	0.7	0.0	0.0	2.3	0.0	0.0	5.9	0.0	0.0
Cycle Q Clear(g_c), s	11.0	0.0	0.0	11.6	0.0	0.0	2.3	0.0	0.0	5.9	0.0	0.0
Prop In Lane	0.59		0.18	0.64		0.24	1.00		0.03	1.00		0.03
Lane Grp Cap(c), veh/h	217	0	0	217	0	0	49	1330	1389	89	1369	1432
V/C Ratio(X)	0.51	0.00	0.00	0.53	0.00	0.00	0.57	0.77	0.78	0.80	0.59	0.59
Avail Cap(c_a), veh/h	342	0	0	343	0	0	71	1330	1389	106	1369	1432
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	0.82	0.82	0.82	0.81	0.81	0.81
Uniform Delay (d), s/veh	63.5	0.0	0.0	63.8	0.0	0.0	71.4	0.0	0.0	68.3	0.0	0.0
Incr Delay (d2), s/veh	1.8	0.0	0.0	2.0	0.0	0.0	8.1	3.6	3.6	24.7	1.5	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.3	0.0	0.0	4.4	0.0	0.0	1.2	1.3	1.4	3.2	0.6	0.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	65.3	0.0	0.0	65.8	0.0	0.0	79.6	3.6	3.6	92.9	1.5	1.5
LnGrp LOS	E	A	A	E	A	A	E	A	A	F	A	A
Approach Vol, veh/h		111			115			2133			1720	
Approach Delay, s/veh		65.3			65.8			4.6			5.3	
Approach LOS		E			E			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	11.5	118.7		22.8	8.2	122.0		22.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$) , s	4.0	5.0		4.0	4.0	5.0		4.0				
Max Green Setting (Gmax), s	9.0	99.0		32.0	6.0	102.0		32.0				
Max Q Clear Time (g_c+11), s	7.9	2.0		13.0	4.3	2.0		13.6				
Green Ext Time (p_c), s	0.0	41.7		0.5	0.0	21.2		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			8.2									
HCM 6th LOS			A									

Intersection						
Int Delay, s/veh	5.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	S	
Traffic Vol, veh/h	25	49	23	4	3	40
Future Vol, veh/h	25	49	23	4	3	40
Conflicting Peds, \#/hr	4	3	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, \%	0	2	14	0	0	0
Mvmt Flow	26	50	23	4	3	41

4: Beaton Way/Whitman Street \& Tennyson Road

	$\stackrel{ }{*}$	\rightarrow	7	7	4	4	\dagger		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	474	869	44	15	784	161	45	97	8	276
v/c Ratio	0.74	0.32	0.04	0.11	0.63	0.29	0.19	0.46	0.03	0.35
Control Delay	33.8	5.3	1.7	38.2	22.7	9.1	29.1	39.3	30.5	10.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.8	5.3	1.7	38.2	22.7	9.1	29.1	39.3	30.5	10.5
Queue Length 50th (t)	196	57	0	7	156	18	16	43	3	53
Queue Length 95th (ft)	\#451	166	10	28	234	62	49	98	16	124
Internal Link Dist (ft)		459			1481		548		469	
Turn Bay Length (t)	175		100	90		100		100		110
Base Capacity (vph)	637	2685	1131	554	2251	921	611	571	719	787
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.74	0.32	0.04	0.03	0.35	0.17	0.07	0.17	0.01	0.35
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.										

	4	\rightarrow	\%	7	\leftarrow	4	4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个4	"	\%	个4	"		\dagger		\%	\uparrow	F
Traffic Volume (veh/h)	455	834	42	14	753	155	29	8	7	93	8	265
Future Volume (veh/h)	455	834	42	14	753	155	29	8	7	93	8	265
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.93	1.00		0.90	0.98		0.97	0.97		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1870	1826	1678	1870	1900	1900	1900	1693	1885	1722	1885
Adj Flow Rate, veh/h	474	869	44	15	784	161	30	8	7	97	8	276
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	0	2	5	15	2	0	0	0	14	1	12	1
Cap, veh/h	506	2258	912	33	1339	545	215	57	37	349	323	737
Arrive On Green	0.28	0.64	0.64	0.02	0.38	0.38	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	1810	3554	1435	1598	3554	1447	778	302	199	1370	1722	1549
Grp Volume(v), veh/h	474	869	44	15	784	161	45	0	0	97	8	276
Grp Sat Flow(s),veh/h/ln	1810	1777	1435	1598	1777	1447	1279	0	0	1370	1722	1549
Q Serve(g_s), s	22.3	10.3	1.0	0.8	15.4	6.8	1.2	0.0	0.0	2.6	0.3	10.1
Cycle Q Clear (g_c), s	22.3	10.3	1.0	0.8	15.4	6.8	2.2	0.0	0.0	4.8	0.3	10.1
Prop In Lane	1.00		1.00	1.00		1.00	0.67		0.16	1.00		1.00
Lane Grp Cap(c), veh/h	506	2258	912	33	1339	545	309	0	0	349	323	737
VIC Ratio(X)	0.94	0.38	0.05	0.45	0.59	0.30	0.15	0.00	0.00	0.28	0.02	0.37
Avail Cap(c_a), veh/h	519	2258	912	458	1835	747	503	0	0	564	593	980
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.6	7.7	6.0	42.2	21.7	19.0	29.6	0.0	0.0	30.6	28.9	15.1
Incr Delay (d2), s/veh	24.0	0.4	0.1	3.4	1.5	1.1	0.1	0.0	0.0	0.2	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	12.6	3.4	0.3	0.4	6.5	2.4	0.8	0.0	0.0	1.8	0.1	3.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	54.7	8.1	6.1	45.6	23.2	20.1	29.6	0.0	0.0	30.7	28.9	15.2
LnGrp LOS	D	A	A	D	C	C	C	A	A	C	C	B
Approach Vol, veh/h		1387			960			45			381	
Approach Delay, s/veh		23.9			23.0			29.6			19.4	
Approach LOS		C			C			C			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	5.8	60.4		20.9	28.4	37.8		20.9				
Change Period ($Y+R \mathrm{c}$), s	4.0	5.0		4.6	4.0	5.0		4.6				
Max Green Setting (Gmax), s	25.0	45.0		30.0	25.0	45.0		30.0				
Max Q Clear Time (g_c+1), s	2.8	12.3		12.1	24.3	17.4		4.2				
Green Ext Time (p_c), s	0.0	16.5		0.7	0.1	15.5		0.1				
Intersection Summary												
HCM 6th Ctrr Delay			23.1									
HCM 6th LOS			C									

Notes

User approved pedestrian interval to be less than phase max green.

5: Dixon Street/E 12th Street \& Tennyson Road

	\rangle	\rightarrow	7	7	4	4	\uparrow	$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	109	593	239	82	631	279	156	21	75
v/c Ratio	0.35	0.49	0.40	0.29	0.54	0.64	0.35	0.09	0.18
Control Delay	31.5	20.3	9.9	32.0	21.8	36.9	22.7	32.6	4.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.5	20.3	9.9	32.0	21.8	36.9	22.7	32.6	4.1
Queue Length 50th (ft)	34	84	19	25	93	87	30	6	0
Queue Length 95th (ft)	104	186	89	84	206	\#316	117	33	18
Internal Link Dist (ft)		1481			525		495	553	
Turn Bay Length (tt)	125		80	130		100			100
Base Capacity (vph)	717	2597	1099	710	2593	438	441	366	771
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.23	0.22	0.12	0.24	0.64	0.35	0.06	0.10
Intersection Summary									
\# 95th percentile volume exceeds capacity, queue may be longer.									

Notes
User approved pedestrian interval to be less than phase max green.

6: Mission Boulevard \& Tennyson Road

	4	\rightarrow	*	4	4	4	\uparrow		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	359	4	253	26	2	388	1731	33	1222	335
V / C Ratio	0.68	0.01	0.56	0.18	0.01	0.80	0.53	0.39	0.45	0.35
Control Delay	67.3	50.5	10.7	63.5	0.0	81.9	17.6	76.1	29.0	13.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.3	50.5	10.7	63.5	0.0	81.9	17.7	76.1	29.0	13.5
Queue Length 50th (ft)	177	3	0	26	0	211	236	33	226	37
Queue Length 95th (ft)	215	14	77	49	0	258	567	m59	424	173
Internal Link Dist (ft)		525		1123			1386		1040	
Turn Bay Length (t)	335		225		315	520		230		210
Base Capacity (vph)	747	409	534	387	424	541	3291	85	2714	946
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	193	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.01	0.47	0.07	0.00	0.72	0.56	0.39	0.45	0.35
Intersection Summary										

7: Tennyson Road \& Main Entry Access Road

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	T		Mr	
Traffic Vol, veh/h	0	36	36	0	0	0
Future Vol, veh/h	0	36	36	0	0	0
Conflicting Peds, \#/hr	2	0	0	2	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, \%	0	3	9	0	0	0
Mvmt Flow	0	44	44	0	0	0

8: Mission Boulevard \& Valle Vista

	$\stackrel{ }{*}$	4	\uparrow	\downarrow
Lane Group	EBL	NBL	NBT	SBT
Lane Group Flow (vph)	59	43	2120	1518
v/c Ratio	0.48	0.43	0.65	0.51
Control Delay	45.7	82.3	3.4	7.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	45.7	82.3	3.4	7.0
Queue Length 50th (tt)	23	42	202	141
Queue Length 95th (ft)	71	85	328	248
Internal Link Dist (ft)	364		816	1386
Turn Bay Length (ft)		225		
Base Capacity (vph)	347	112	3243	2983
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.17	0.38	0.65	0.51
Intersection Summary				

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	1/19/2021		
File:	H: \<4\<24641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal		
Intersection:	Warrants\IExisting intersection 3 AM.xlsmlWar \#3 - 3. East 16th Street \& Hancock Street		
Scenario:	Existing PM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Hour		Major Street		Minor Street	
Begin	End	NB	SB	EB	

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	1/19/2021		
e:	H: \<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal		
Intersection: Scenario:	Warrants\IExisting intersection 3 AM.xlsmlWar \#3 7. Site Access Road \& Tennyson Road		
	Existing PM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Begin	End	EB	WB	NB
4:15 PM $5: 15$ PM	36	36	0	0
2nd Highest Hour	34	34	0	0
3rd Highest Hour	34	34	0	0
4th Highest Hour	32	32	0	0
5th Highest Hour	32	32	0	0
6th Highest Hour	32	32	0	0
7th Highest Hour	30	30	0	0
8th Highest Hour	30	30	0	0
9th Highest Hour	29	29	0	0
10th Highest Hour	27	27	0	0
11th Highest Hour	26	26	0	0
12th Highest Hour	25	25	0	0
13th Highest Hour	24	24	0	0
14th Highest Hour	21	21	0	0
15th Highest Hour	17	17	0	0
16th Highest Hour	16	16	0	0
17th Highest Hour	11	11	0	0
18th Highest Hour	9	9	0	0
19th Highest Hour	5	5	0	0
20th Highest Hour	3	3	0	0
21st Highest Hour	3	3	0	0
22nd Highest Hour	2	2	0	0
23rd Highest Hour	1	1	0	0
24th Highest Hour	1	1	0	0

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

Appendix 3 - Intersection
 Queuing Analysis
 Spreadsheet

\#	Intersection	Control	Movement		Storage	Existing				Existing Plus Project				
					$\begin{gathered} \text { AM Queue } \\ \text { (ft.) } \end{gathered}$	$\begin{gathered} \text { Exceed } \\ \text { Storage? } \end{gathered}$	$\begin{gathered} \text { PM Queue } \\ (\mathrm{ft.} \text {) } \end{gathered}$	$\begin{gathered} \text { Exceed } \\ \text { Storage? } \end{gathered}$	$\begin{gathered} \text { AM Queue } \\ \text { (ft.) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Exceed } \\ & \text { Storase? } \end{aligned}$	$\begin{gathered} \hline \text { PM Queue } \\ \text { (ft.) } \end{gathered}$	$\begin{aligned} & \text { Exceed } \\ & \text { Storage? } \end{aligned}$		
1	Mission Boulevard \& Calhoun Street	Signal	NB	Left		95	<25[b]		<25 [b]		<25[b]		<25 [b]	
				Thru/Right	145	374	Yes	380	Yes	571	Yes	391	Yes	
			SB	Left	175	234	Yes	133		234	Yes	133		
				Thru/Right	175	778	Yes	421	Yes	894	Yes	437	Yes	
			EB	R1ght	155	<25		<25		<25		<25		
			wB	Left/Thru/Right	510	196		109		196		109		
2	Mission Boulevard \& Hancock Street	Signal	nв	Left	240	39 [b]		57 [b]		26 [b]		54 [b]		
				Thru/Right	1,055	195		1,242	Yes	215		1,265	Yes	
			SB	Left	195	47 [b]		129		57 [b]		178 [c]		
				Thru/Right	1,315	488 [c]		213		1257 [c]		214		
			ев	Left/Thru/Right	185	167		164		168		159		
			wB	Left/Thru/Right	780	282		168		402 [c]		201		
3	East 16th Street \& Hancock Street [a]	TwSC	NB	Left/Thru/Right	460	<25		<25		<25		<25		
			SB	Left/Thru/Right	345	N/A		N/A		<25		<25		
			EB	Left/Thru/Right	780	<25		<25		38		<25		
			wB	Left/Thru/Right	75	N/A		N/A		<25		<25		
4	Whitman Street/Beatron Way \& Tennyson Road	Signal	Nв	Left/Thru/Right	110	139	Yes	49		145	Yes	50		
			SB	Left	100	280 [c]	Yes	98		295 [c]	Yes	100		
				Thru	275	<25		<25		<25		<25		
				Right	100	331	Yes	124	Yes	365	Yes	129	Yes	
			Eв	Left	175	410 [c]	Yes	451 [c]	Yes	432 [c]	Yes	464 [c]	Yes	
				Thru	425	264		166		287		171		
				Right	105	<25		<25		<25		<25		
			wB	Left	90	<25		28		<25		28		
				Thru	265	271	Yes	234		298	Yes	240		
				Right	95	94		62		101	Yes	62		
5	East 12th Street/Dixon Street \& Tennyson Road	Signal	NB	Left	100	314 [c]	Yes	316 [c]	Yes	334 [c]	Yes	320 [c]	Yes	
				Thru/Right	170	83		117		89		118		
			sb	Left/Thru	275	130 [c]		33		139 [c]		33		
				Right	95	28		<25		40		<25		
			Eb	Left	120	151	Yes	104		158	Yes	105		
				Thru	1,020	234		186		264		192		
				Right	80	160	Yes	89	Yes	175	Yes	92	Yes	
			wB	Left	125	114		84		124		86		
				Thru/Right	160	187	Yes	206	Yes	213	Yes	212	Yes	
6	Mission Boulevard \& Tennyson Road	Signal	NB	Left	515	201 [c]		258		201 [c]		259		
				Thru/Right	1,320	485		567		521		575		
			SB	Left	235	<25[b]		59 [b]		167 [b] [c]		72 [b]		
				Thru	490	757 [c]	Yes	424		690 [b] [c]	Yes	417		
				Right	210	128 [b]		173		$113[\mathrm{b]}$		181		
			${ }_{\text {eb }}$	Left	465	205		215		207		223		
				Thru	465	<25		<25		95		<25		
				Right	215	72		77		72		77		
			wB	Left/Thru	1,115	30		49		173		75		
				Right	315	<25		<25		46		<25		
7	Site Access Road \& Tennyson Road	TwSC	SB	Left/R/ight	115	<25		<25		35		<25		
			ев	Left/Thru	1,115	<25		<25		<25		<25		
8	Mission Boulevard \& Valle Vista Avenue	Signal	nв	Left	225	170 [c]		85		170 [c]		85		
				Thru	1,075	171		328		187		337		
			SB	Thru/Right	390	641	Yes	248		710	Yes	254		
			EB	Left/R/ight	80	60		71		60		71		

Project Contribution			
AM Queue	AM Cars	PM Queue	PM Cars
-2	0	0	0
197	8	11	0
0	0	0	0
116	5	16	1
0	0	0	0
0	0	0	0
-13	-1	-3	0
20	1	23	1
10	0	49	2
769	31	1	0
1	0	-5	0
120	5	33	1
2	0	3	0
0	0	0	0
15	1	8	0
8	0	3	0
6	0	1	0
15	1	2	0
0	0	0	0
34	1	5	0
22	1	13	1
23	1	5	0
-1	0	0	0
1	0	0	0
27	1	6	0
7	0	0	0
20	1	4	0
6	0	1	0
9	0	0	0
12	0	0	0
7	0	1	0
30	1	6	0
15	1	3	0
10	0	2	0
26	1	6	0
0	0	1	0
36	1	8	0
157	6	13	1
-67	-3	-7	0
-15	-1	8	0
2	0	8	0
84	3	9	0
0	0	0	0
143	6	26	1
46	2	0	0
35	1	3	0
23	1	0	0
0	0	0	0
16	1	9	0
69	3	6	0
0	0	0	0

[^0]Appendix 4 -
Existing Plus Project Level of Service, Queuing, and Peak Hour Traffic Signal Warrants Worksheets

1: Mission Boulevard \& Driveway/Calhoun Street

		4			\dagger
Lane Group	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	202	11	1739	176	2125
v/c Ratio	0.77	0.13	0.76	0.73	0.76
Control Delay	56.6	51.4	23.2	77.2	12.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	56.6	51.4	23.2	77.2	12.5
Queue Length 50th (ft)	117	10	438	161	380
Queue Length 95th (ft)	196	m12	571	234	894
Internal Link Dist (ft)	729		1333		1909
Turn Bay Length (ft)		90		275	
Base Capacity (vph)	413	83	2279	275	2781
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.49	0.13	0.76	0.64	0.76
Intersection Summary					
m Volume for 95th percentile queue is metered by upstream signal.					

2: Mission Boulevard \& Hancock Street

	\rightarrow	\downarrow	4	4		$\frac{1}{7}$
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	133	290	18	1913	41	2381
v/c Ratio	0.50	0.95	0.26	0.84	0.50	1.00
Control Delay	55.9	94.4	88.8	20.8	89.1	37.2
Queue Delay	0.0	0.0	0.0	0.6	0.0	0.0
Total Delay	55.9	94.4	88.8	21.5	89.1	37.2
Queue Length 50th (ft)	108	262	18	997	36	~1287
Queue Length 95th (ft)	168	\#402	m26	215	m57	\#1257
Internal Link Dist (ft)	518	789		1040		1333
Turn Bay Length (ft)			240		200	
Base Capacity (vph)	273	312	69	2287	84	2372
Starvation Cap Reductn	0	0	0	118	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.49	0.93	0.26	0.88	0.49	1.00
Intersection Summary						
\sim Volume exceeds capacity, queue is theoretically infinite.						
Queue shown is maximum after two cycles.						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						
m Volume for 95 th percentile queue is metered by upstream signal.						

	$\stackrel{*}{ }$		\%	7		4	4	4	p		\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			*		${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	中 ${ }^{\text {a }}$	
Traffic Volume (veh/h)	85	22	6	151	39	56	15	1532	94	35	2000	24
Future Volume (veh/h)	85	22	6	151	39	56	15	1532	94	35	2000	24
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	0.99		0.98	1.00		0.97	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1781	1856	1856	1841	1856	1856
Adj Flow Rate, veh/h	100	26	7	178	46	66	18	1802	111	41	2353	28
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, \%	0	0	0	0	0	0	8	3	3	4	3	3
Cap, veh/h	241	59	14	234	50	72	36	2257	137	59	2433	29
Arrive On Green	0.21	0.21	0.21	0.21	0.21	0.21	0.04	1.00	1.00	0.04	0.91	0.91
Sat Flow, veh/h	955	288	69	940	243	349	1697	3369	205	1753	3566	42
Grp Volume(v), veh/h	133	0	0	290	0	0	18	933	980	41	1160	1221
Grp Sat Flow(s),veh/h/ln	1312	0	0	1532	0	0	1697	1763	1811	1753	1763	1845
Q Serve(g_s), s	0.0	0.0	0.0	13.8	0.0	0.0	1.5	0.0	0.0	3.3	70.3	73.6
Cycle Q Clear(g_c), s	12.8	0.0	0.0	26.6	0.0	0.0	1.5	0.0	0.0	3.3	70.3	73.6
Prop In Lane	0.75		0.05	0.61		0.23	1.00		0.11	1.00		0.02
Lane Grp Cap(c), veh/h	314	0	0	356	0	0	36	1181	1214	59	1203	1259
V/C Ratio(X)	0.42	0.00	0.00	0.81	0.00	0.00	0.50	0.79	0.81	0.70	0.96	0.97
Avail Cap(c_a), veh/h	337	0	0	380	0	0	71	1181	1214	85	1203	1259
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.33	1.33	1.33
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	0.00	0.68	0.68	0.68	0.56	0.56	0.56
Uniform Delay (d), s/veh	50.3	0.0	0.0	55.8	0.0	0.0	68.2	0.0	0.0	68.1	5.4	5.5
Incr Delay (d2), s/veh	0.9	0.0	0.0	12.2	0.0	0.0	7.0	3.7	4.0	8.0	12.7	13.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.4	0.0	0.0	11.6	0.0	0.0	0.7	1.2	1.4	1.6	8.3	8.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	51.3	0.0	0.0	67.9	0.0	0.0	75.1	3.7	4.0	76.1	18.1	18.6
LnGrp LOS	D	A	A	E	A	A	E	A	A	E	B	B
Approach Vol, veh/h		133			290			1931			2422	
Approach Delay, s/veh		51.3			67.9			4.6			19.3	
Approach LOS		D			E			A			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	8.8	101.5		33.7	7.1	103.2		33.7				
Change Period (Y+Rc), s	4.0	5.0		4.0	4.0	5.0		4.0				
Max Green Setting (Gmax), s	7.0	92.0		32.0	6.0	93.0		32.0				
Max Q Clear Time (g_c+11), s	5.3	2.0		14.8	3.5	75.6		28.6				
Green Ext Time (p_c), s	0.0	31.5		0.6	0.0	15.5		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.2									
HCM 6th LOS			B									

Intersection												
Int Delay, s/veh	7.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			*			*			\$	
Traffic Vol, veh/h	91	8	16	0	24	0	59	8	0	0	5	100
Future Vol, veh/h	91	8	16	0	24	0	59	8	0	0	5	100
Conflicting Peds, \#/hr	7	0	1	1	0	7	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	59	59	59	59	59	59	59	59	59	59	59	59
Heavy Vehicles, \%	1	0	0	0	0	0	0	0	0	0	0	5
Mvmt Flow	154	14	27	0	41	0	100	14	0	0	8	169

4: Beaton Way/Whitman Street \& Tennyson Road

	\rangle	\rightarrow	7	7	4	4	\dagger		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	363	1026	66	9	799	234	150	243	7	545
v/c Ratio	0.83	0.48	0.07	0.08	0.67	0.41	0.40	0.84	0.01	0.68
Control Delay	54.3	11.6	3.8	50.5	29.7	11.9	32.9	60.1	29.5	19.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	54.3	11.6	3.8	50.5	29.7	11.9	32.9	60.1	29.5	19.9
Queue Length 50th (tt)	218	164	3	6	227	39	73	143	3	194
Queue Length 95th (ft)	\#432	287	23	24	298	101	145	\#295	15	365
Internal Link Dist (ft)		470			1481		548		469	
Turn Bay Length (ft)	175		100	90		100		100		110
Base Capacity (vph)	487	2157	941	492	1673	738	476	372	622	849
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.48	0.07	0.02	0.48	0.32	0.32	0.65	0.01	0.64
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.										

	4	\rightarrow		\dagger			4	4	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个4	「	\％	个4	「		¢		\％	\uparrow	「
Traffic Volume（veh／h）	323	913	59	8	711	208	77	32	24	216	6	485
Future Volume（veh／h）	323	913	59	8	711	208	77	32	24	216	6	485
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.92	1.00		0.88	0.95		0.88	0.92		0.89
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1826	1870	1900	1811	1885	1900	1900	1900	1885	1900	1870
Adj Flow Rate，veh／h	363	1026	66	9	799	234	87	36	27	243	7	545
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh，\％	1	5	2	0	6	1	0	0	0	1	0	2
Cap，veh／h	393	1952	820	24	1228	502	224	90	57	414	555	759
Arrive On Green	0.22	0.56	0.56	0.01	0.36	0.36	0.29	0.29	0.29	0.29	0.29	0.29
Sat Flow，veh／h	1795	3469	1458	1810	3441	1407	577	310	195	1238	1900	1409
Grp Volume（v），veh／h	363	1026	66	9	799	234	150	0	0	243	7	545
Grp Sat Flow（s），veh／h／n	1795	1735	1458	1810	1721	1407	1081	0	0	1238	1900	1409
Q Serve（g＿s），s	20.3	18.9	2.1	0.5	20.0	13.2	9.5	0.0	0.0	8.5	0.3	30.0
Cycle Q Clear（g＿c），s	20.3	18.9	2.1	0.5	20.0	13.2	11.0	0.0	0.0	19.5	0.3	30.0
Prop In Lane	1.00		1.00	1.00		1.00	0.58		0.18	1.00		1.00
Lane Grp Cap（c），veh／h	393	1952	820	24	1228	502	371	0	0	414	555	759
V／C Ratio（X）	0.92	0.53	0.08	0.38	0.65	0.47	0.40	0.00	0.00	0.59	0.01	0.72
Avail Cap（c＿a），veh／h	437	1952	820	440	1506	616	371	0	0	414	555	759
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	39.3	14.0	10.3	50.3	27.7	25.5	29.3	0.0	0.0	33.0	25.9	20.0
Incr Delay（d2），s／veh	22.8	0.8	0.2	3.6	2.2	2.4	0.3	0.0	0.0	1.5	0.0	2.9
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	11.2	7.0	0.7	0.3	8.5	4.7	3.0	0.0	0.0	5.6	0.1	10.6
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	62.1	14.8	10.4	53.9	29.9	27.9	29.6	0.0	0.0	34.5	25.9	22.9
LnGrp LOS	E	B	B	D	C	C	C	A	A	C	C	C
Approach Vol，veh／h		1455			1042			150			795	
Approach Delay，s／veh		26.4			29.6			29.6			26.5	
Approach LOS		C			C			C			C	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	5.4	62.8		34.6	26.5	41.7		34.6				
Change Period（ $Y+R \mathrm{R}$ ），s	4.0	5.0		4.6	4.0	5.0		4.6				
Max Green Setting（Gmax），s	25.0	45.0		30.0	25.0	45.0		30.0				
Max Q Clear Time（g＿c＋1），s	2.5	20.9		32.0	22.3	22.0		13.0				
Green Ext Time（p＿c），s	0.0	16.1		0.0	0.2	14.7		0.7				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			27.5									
			C									

Notes
User approved pedestrian interval to be less than phase max green．

5: Dixon Street/E 12th Street \& Tennyson Road

	$\stackrel{*}{ }$	\rightarrow	\%	\dagger	4	4	4	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	160	758	390	115	599	249	172	79	162
v/c Ratio	0.55	0.66	0.61	0.49	0.55	0.90	0.49	0.73	0.28
Control Delay	44.6	29.4	16.4	45.9	28.8	75.2	18.2	79.6	5.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.6	29.4	16.4	45.9	28.8	75.2	18.2	79.6	5.7
Queue Length 50th (tt)	88	197	87	64	152	146	23	45	10
Queue Length 95th (ft)	158	264	175	124	213	\#334	89	\#139	40
Internal Link Dist (ft)		1481			525		495	553	
Turn Bay Length (ft)	125		80	130		100			100
Base Capacity (vph)	477	1669	830	446	1666	278	353	108	728
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.34	0.45	0.47	0.26	0.36	0.90	0.49	0.73	0.22
Intersection Summary									
\# 95th percentile volume exceeds capacity, queue may be longer.									

	\rangle	\rightarrow	\%	\checkmark	-	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	「	${ }^{7}$	\uparrow		${ }^{7}$	$\hat{\beta}$			\uparrow	F
Traffic Volume (veh/h)	138	652	335	99	510	5	214	32	116	10	58	139
Future Volume (veh/h)	138	652	335	99	510	5	214	32	116	10	58	139
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.91	1.00		0.92
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1826	1841	1767	1826	1826	1826	1900	1900	1870	1870	1811
Adj Flow Rate, veh/h	160	758	390	115	593	6	249	37	135	12	67	162
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, \%	2	5	4	9	5	5	5	0	0	2	2	6
Cap, veh/h	205	1411	627	150	1339	14	286	55	199	39	215	371
Arrive On Green	0.12	0.41	0.41	0.09	0.38	0.38	0.16	0.16	0.16	0.14	0.14	0.14
Sat Flow, veh/h	1781	3469	1543	1682	3518	36	1739	332	1212	282	1574	1418
Grp Volume(v), veh/h	160	758	390	115	292	307	249	0	172	79	0	162
Grp Sat Flow(s),veh/h/n	1781	1735	1543	1682	1735	1819	1739	0	1544	1856	0	1418
Q Serve(g_s), s	7.8	14.9	18.0	6.0	11.2	11.3	12.5	0.0	9.4	3.4	0.0	8.6
Cycle Q Clear (g_c), s	7.8	14.9	18.0	6.0	11.2	11.3	12.5	0.0	9.4	3.4	0.0	8.6
Prop In Lane	1.00		1.00	1.00		0.02	1.00		0.78	0.15		1.00
Lane Grp Cap (c), veh/h	205	1411	627	150	660	692	286	0	254	253	0	371
V/C Ratio(X)	0.78	0.54	0.62	0.77	0.44	0.44	0.87	0.00	0.68	0.31	0.00	0.44
Avail Cap(c_a), veh/h	497	1742	775	469	871	913	291	0	258	311	0	414
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	38.5	20.2	21.1	39.9	20.7	20.7	36.5	0.0	35.2	34.9	0.0	28.3
Incr Delay (d2), s/veh	10.4	1.2	3.6	13.0	1.7	1.6	23.4	0.0	6.8	0.7	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.0	6.1	6.9	3.0	4.8	5.0	7.1	0.0	4.0	1.6	0.0	3.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	48.9	21.3	24.8	52.8	22.4	22.3	59.9	0.0	42.0	35.6	0.0	29.1
LnGrp LOS	D	C	C	D	C	C	E	A	D	D	A	C
Approach Vol, veh/h		1308			714			421			241	
Approach Delay, s/veh		25.7			27.2			52.6			31.2	
Approach LOS		C			C			D			C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	12.0	41.4		16.8	14.3	39.1		19.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.0	5.0		4.6	4.0	5.0		4.6				
Max Green Setting (Gmax), s	25.0	45.0		15.0	25.0	45.0		15.0				
Max Q Clear Time (g_c+11), s	8.0	20.0		10.6	9.8	13.3		14.5				
Green Ext Time (p_c), s	0.5	16.4		0.4	0.7	10.3		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			30.8									
HCM 6th LOS			C									

Notes

User approved pedestrian interval to be less than phase max green.

6: Mission Boulevard \& Tennyson Road

	4	\rightarrow			4	4	\uparrow	\checkmark	$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	375	69	279	139	98	220	1527	119	1878	282
V / C Ratio	0.66	0.21	0.57	0.59	0.34	0.61	0.70	0.49	0.79	0.35
Control Delay	61.0	51.2	9.9	67.8	11.9	68.7	35.7	54.8	40.4	21.2
Queue Delay	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Total Delay	61.0	51.2	9.9	67.8	12.0	68.7	35.7	54.8	40.4	21.2
Queue Length 50th (ft)	172	57	0	127	0	102	406	110	480	112
Queue Length 95th (ft)	207	95	72	173	46	\#201	521	m\#167	m\#690	m113
Internal Link Dist (t)		525		1121			1386		1040	
Turn Bay Length (tt)	335		225		315	520		230		210
Base Capacity (vph)	771	435	564	424	438	358	2185	241	2387	798
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	29	0	66	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.49	0.16	0.49	0.33	0.24	0.61	0.72	0.49	0.79	0.35
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.										
Queue shown is maximum after two cycles.m Volume for 95th percentile queue is metered by upstream signal										

	4	\rightarrow		\checkmark		4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}{ }^{1 / 1}$	\uparrow	${ }^{*}$		4	「	\％${ }^{1 / 1}$	惺 ${ }^{\text {a }}$		${ }^{*}$	ヶ个ヶ	F
Traffic Volume（veh／h）	334	61	248	67	57	87	196	1291	68	106	1671	251
Future Volume（veh／h）	334	61	248	67	57	87	196	1291	68	106	1671	251
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.98	1.00		0.97	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1841	1900	1841	1900	1900	1900	1811	1856	1856	1811	1870	1856
Adj Flow Rate，veh／h	375	69	279	75	64	98	220	1451	76	119	1878	282
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh，\％	4	0	4	0	0	0	6	3	3	6	2	3
Cap，veh／h	692	387	315	109	93	173	209	2561	134	72	2552	772
Arrive On Green	0.20	0.20	0.20	0.11	0.11	0.11	0.06	0.52	0.52	0.08	1.00	1.00
Sat Flow，veh／h	3401	1900	1546	998	852	1584	3346	4920	258	1725	5106	1544
Grp Volume（v），veh／h	375	69	279	139	0	98	220	996	531	119	1878	282
Grp Sat Flow（s），veh／h／ln	1700	1900	1546	1850	0	1584	1673	1689	1800	1725	1702	1544
Q Serve（g＿s），s	14.2	4.3	25.3	10.4	0.0	8.5	9.0	28.9	28.9	6.0	0.1	0.0
Cycle Q Clear（g＿c），s	14.2	4.3	25.3	10.4	0.0	8.5	9.0	28.9	28.9	6.0	0.1	0.0
Prop In Lane	1.00		1.00	0.54		1.00	1.00		0.14	1.00		1.00
Lane Grp Cap（c），veh／h	692	387	315	202	0	173	209	1758	937	72	2552	772
V／C Ratio（X）	0.54	0.18	0.89	0.69	0.00	0.57	1.05	0.57	0.57	1.66	0.74	0.37
Avail Cap（c＿a），veh／h	779	435	354	424	0	363	209	1758	937	72	2552	772
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（l）	0.71	0.71	0.71	1.00	0.00	1.00	0.85	0.85	0.85	0.09	0.09	0.09
Uniform Delay（d），s／veh	51.3	47.4	55.7	61.8	0.0	60.9	67.5	23.5	23.5	66.0	0.0	0.0
Incr Delay（d2），s／veh	0.5	0.2	16.1	4.1	0.0	2.9	71.7	1.1	2.1	300.7	0.2	0.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	6.2	2.1	11.3	5.2	0.0	3.6	5.9	11.5	12.5	8.5	0.1	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	51.8	47.6	71.8	65.9	0.0	63.8	139.2	24.6	25.6	366.7	0.2	0.1
LnGrp LOS	D	D	E	E	A	E	F	C	C	F	A	A
Approach Vol，veh／h		723			237			1747			2279	
Approach Delay，s／veh		59.1			65.0			39.3			19.3	
Approach LOS		E			E			D			B	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	13.0	77.0		19.7	10.0	80.0		34.3				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	4.0	5.0		4.0	4.0	5.0		5.0				
Max Green Setting（Gmax），s	9.0	51.0		33.0	6.0	54.0		33.0				
Max Q Clear Time（g＿c＋1），s	11.0	2.1		12.4	8.0	30.9		27.3				
Green Ext Time（p＿c），s	0.0	25.5		1.1	0.0	11.1		1.6				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			34.3									
			C									

7: Tennyson Road \& Main Entry Access Road

Intersection						
Int Delay, s/veh	7.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		${ }_{1} 1$	\uparrow		*	
Traffic Vol, veh/h	224	39	45	0	0	198
Future Vol, veh/h	224	39	45	0	0	198
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	63	63	63	63	63	63
Heavy Vehicles, \%	0	6	10	0	0	0
Mvmt Flow	356	62	71	0	0	314

8: Mission Boulevard \& Valle Vista

	\rangle	4		\downarrow
Lane Group	EBL	NBL	NBT	SBT
Lane Group Flow (vph)	52	80	1625	2275
V / C Ratio	0.47	0.75	0.51	0.80
Control Delay	43.1	103.5	2.4	11.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	43.1	103.5	2.4	11.0
Queue Length 50th (ft)	17	76	113	520
Queue Length 95th (ft)	60	\#170	187	710
Internal Link Dist (ft)	364		816	1386
Turn Bay Length (t)		225		
Base Capacity (vph)	323	107	3168	2854
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.16	0.75	0.51	0.80
Intersection Summary				
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.				

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641
Project Name:	Hayward Parcel 3 Entitlements
Analyst:	MZS
Date:	$5 / 19 / 2021$
File:	H:\<24\<4641-Haywara Parcel 3
	Entitlements\analysis\LTA\Signal Warrants\Existing
Intersection:	PP\VExistingPP intersection 3 AM..xlsmlWar \#3 - Peak
Scenario:	3. East 16th Street \& Hancock Street
	Existing Plus Project AM

Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
$\# 4$	Pedestrian Volume	No	-
$\# 5$	School Crossing	No	-
$\# 6$	Coordinated Signal System	No	-
$\# 7$	Crash Experience	No	-
$\# 8$	Roadway Network	No	-
$\# 9$	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes

Major Street		Minor Street	
NB	SB	EB	WB
67	198	263	45
63	187	249	43
63	185	245	42
60	177	235	40
59	174	231	40
59	174	231	40
56	166	221	38
55	164	217	37
54	158	210	36
50	148	196	34
48	143	189	32
47	140	186	32
46	135	179	31
39	116	154	26
31	92	123	21
29	87	116	20
21	61	81	14
17	50	67	11
9	26	35	6
6	18	25	4
5	16	21	4
4	11	14	2
2	5	7	1
2	5	7	1

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 th-Highest Hour / Peak Hour	83%

Warrant \#1 - Eight Hour

Warrant Factor	Condition	Major Street Requirement	Minor Street Requirement	Hours That Condition Is Met	Condition for Warrant Factor Met?	Signal Warrant Met?
100%	A	500	150	0	No	No
	B	750	75	0	No	
80%	A	400	120	0	No	No
	B	600	60	0	No	
70%	A	350	105	0	No	No
	B	525	53	0	No	
56%	A	280	84	0	No	No
	B	420	42	0	No	

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	5/19/2021		
File:	H:\<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal Warrants\Existing		
Intersection: Scenario:	PP\IExistingPP intersection 3 AM.xlsmlWar \#3 - Peak 7. Site Access Road \& Tennyson Road		
	Existing Plus Project AM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Hour		Major Street		Minor Street	
Begin	End	WB	NB	SB	
7:15 AM	263	45	0	198	
2nd Highest Hour	249	43	0	187	
3rd Highest Hour	245	42	0	185	
4th Highest Hour	235	40	0	177	
5th Highest Hour	231	40	0	174	
6th Highest Hour	231	40	0	174	
7th Highest Hour	221	38	0	166	
8th Highest Hour	217	37	0	164	
9th Highest Hour	210	36	0	158	
10th Highest Hour	196	34	0	148	
11th Highest Hour	189	32	0	143	
12th Highest Hour	186	32	0	140	
13th Highest Hour	179	31	0	135	
14th Highest Hour	154	26	0	116	
15th Highest Hour	123	21	0	92	
16th Highest Hour	116	20	0	87	
17th Highest Hour	81	14	0	61	
18th Highest Hour	67	11	0	50	
19th Highest Hour	35	6	0	26	
20th Highest Hour	25	4	0	18	
21st Highest Hour	21	4	0	16	
22nd Highest Hour	14	2	0	11	
23rd Highest Hour	7	1	0	5	
24th Highest Hour	7		0	5	

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

1: Mission Boulevard \& Driveway/Calhoun Street

	\cdots		4		(\downarrow
Lane Group	EBR	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	2	94	15	2241	80	1717
v/c Ratio	0.01	0.61	0.18	0.82	0.55	0.57
Control Delay	0.0	54.6	58.6	9.7	80.9	5.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	0.0	54.6	58.6	9.7	80.9	5.7
Queue Length 50th (ft)	0	50	14	265	78	158
Queue Length 95th (ft)	0	109	m19	391	133	437
Internal Link Dist (ft)		729		1334		1909
Turn Bay Length (ft)			90		275	
Base Capacity (vph)	382	354	82	2732	150	3007
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.27	0.18	0.82	0.53	0.57
Intersection Summary						
m Volume for 95th perce	ueue	metere	by upstread	m sign		

2: Mission Boulevard \& Hancock Street

	\rightarrow		4	\dagger		\downarrow
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	111	146	28	2149	93	1658
v/c Ratio	0.59	0.78	0.31	0.87	0.60	0.62
Control Delay	69.7	83.9	93.3	27.7	90.8	7.4
Queue Delay	0.0	0.0	0.0	1.5	0.0	0.0
Total Delay	69.7	83.9	93.3	29.2	90.8	7.4
Queue Length 50th (ft)	99	132	24	994	97	421
Queue Length 95th (ft)	159	201	m54	1265	\#178	214
Internal Link Dist (ft)	518	789		1040		1334
Turn Bay Length (ft)			240		200	
Base Capacity (vph)	284	282	89	2466	155	2692
Starvation Cap Reductn	0	0	0	164	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.39	0.52	0.31	0.93	0.60	0.62
Intersection Summary						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.m Volume for 95th percentile queue is metered by upstream signal						

	$\stackrel{*}{ }$		\%	7		4	4	4	\%		\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&		${ }^{7}$	㻢		${ }^{1 /}$	㻢	
Traffic Volume (veh/h)	64	24	19	89	13	40	27	2022	62	90	1585	23
Future Volume (veh/h)	64	24	19	89	13	40	27	2022	62	90	1585	23
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.97	0.99		0.98	1.00		0.96	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1900	1900	1900	1900	1885	1885	1900	1885	1885
Adj Flow Rate, veh/h	66	25	20	92	13	41	28	2085	64	93	1634	24
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	4	4	4	0	0	0	0	1	1	0	1	1
Cap, veh/h	146	54	36	159	24	57	49	2539	77	106	2702	40
Arrive On Green	0.14	0.14	0.14	0.14	0.14	0.14	0.05	1.00	1.00	0.12	1.00	1.00
Sat Flow, veh/h	779	388	256	866	172	405	1810	3543	108	1810	3611	53
Grp Volume(v), veh/h	111	0	0	146	0	0	28	1047	1102	93	809	849
Grp Sat Flow(s),veh/h/ln	1423	0	0	1443	0	0	1810	1791	1860	1810	1791	1873
Q Serve(g_s), s	0.0	0.0	0.0	3.8	0.0	0.0	2.3	0.0	0.0	7.7	0.0	0.0
Cycle Q Clear(g_c), s	11.1	0.0	0.0	14.9	0.0	0.0	2.3	0.0	0.0	7.7	0.0	0.0
Prop In Lane	0.59		0.18	0.63		0.28	1.00		0.06	1.00		0.03
Lane Grp Cap(c), veh/h	236	0	0	240	0	0	49	1283	1333	106	1340	1401
V/C Ratio(X)	0.47	0.00	0.00	0.61	0.00	0.00	0.57	0.82	0.83	0.87	0.60	0.61
Avail Cap(c_a), veh/h	337	0	0	341	0	0	71	1283	1333	106	1340	1401
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	0.00	0.79	0.79	0.79	0.80	0.80	0.80
Uniform Delay (d), s/veh	61.3	0.0	0.0	63.0	0.0	0.0	71.4	0.0	0.0	66.9	0.0	0.0
Incr Delay (d2), s/veh	1.5	0.0	0.0	2.5	0.0	0.0	7.8	4.6	4.8	42.8	1.6	1.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.2	0.0	0.0	5.7	0.0	0.0	1.2	1.7	1.8	4.6	0.6	0.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	62.7	0.0	0.0	65.5	0.0	0.0	79.3	4.6	4.8	109.8	1.6	1.6
LnGrp LOS	E	A	A	E	A	A	E	A	A	F	A	A
Approach Vol, veh/h		111			146			2177			1751	
Approach Delay, s/veh		62.7			65.5			5.7			7.3	
Approach LOS		E			E			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	114.6		25.4	8.2	119.5		25.4				
Change Period (Y+Rc), s	4.0	5.0		4.0	4.0	5.0		4.0				
Max Green Setting (Gmax), s	9.0	99.0		32.0	6.0	102.0		32.0				
Max Q Clear Time (g_c+11), s	9.7	2.0		13.1	4.3	2.0		16.9				
Green Ext Time (p_c), s	0.0	44.4		0.5	0.0	21.5		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			10.0									
HCM 6th LOS			A									

4: Beaton Way/Whitman Street \& Tennyson Road

	$\stackrel{ }{*}$	\rightarrow	7	7	4	4	\dagger		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	474	884	44	15	800	161	45	97	8	276
v/c Ratio	0.75	0.33	0.04	0.11	0.63	0.29	0.19	0.46	0.03	0.35
Control Delay	34.5	5.3	1.6	38.8	22.6	9.2	29.5	39.8	30.9	11.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.5	5.3	1.6	38.8	22.6	9.2	29.5	39.8	30.9	11.0
Queue Length 50th (tt)	197	58	0	7	161	19	16	43	3	55
Queue Length 95th (ft)	\#464	171	10	28	240	62	50	100	16	129
Internal Link Dist (ft)		459			1481		548		469	
Turn Bay Length (ft)	175		100	90		100		100		110
Base Capacity (vph)	633	2691	1133	550	2234	915	607	567	713	781
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.33	0.04	0.03	0.36	0.18	0.07	0.17	0.01	0.35
Intersection Summary										
\# 95th percentile volume exceeds capacity, queue may be longer.										

Notes
User approved pedestrian interval to be less than phase max green.

5: Dixon Street/E 12th Street \& Tennyson Road

	\rangle	\rightarrow	7	7	4	4	\uparrow	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	109	608	239	83	647	279	157	21	75
v / c Ratio	0.35	0.49	0.40	0.30	0.55	0.64	0.36	0.09	0.18
Control Delay	32.0	20.3	10.1	32.4	21.8	37.6	23.1	33.1	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.0	20.3	10.1	32.4	21.8	37.6	23.1	33.1	4.2
Queue Length 50th (tt)	34	87	20	26	96	87	30	6	0
Queue Length 95th (ft)	105	192	92	86	212	\#320	118	33	18
Internal Link Dist (tt)		1481			525		495	553	
Turn Bay Length (ft)	125		80	130		100			100
Base Capacity (vph)	711	2580	1091	704	2577	434	438	352	766
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.24	0.22	0.12	0.25	0.64	0.36	0.06	0.10
Intersection Summary									
\# 95th percentile volume exceeds capacity, queue may be longer.									

	4	\rightarrow		\dagger			4	4	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个个	「	${ }^{*}$	中t		${ }^{*}$	\uparrow			\uparrow	F
Traffic Volume（veh／h）	104	578	227	79	609	6	265	62	87	4	16	71
Future Volume（veh／h）	104	578	227	79	609	6	265	62	87	4	16	71
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.95	1.00		0.97	1.00		0.92	1.00		0.95
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1811	1885	1841	1796	1885	1885	1841	1870	1870	1900	1900	1841
Adj Flow Rate，veh／h	109	608	239	83	641	6	279	65	92	4	17	75
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	6	1	4	7	1	1	4	2	2	0	0	4
Cap，veh／h	147	1285	533	114	1238	12	333	126	178	49	208	334
Arrive On Green	0.09	0.36	0.36	0.07	0.34	0.34	0.19	0.19	0.19	0.14	0.14	0.14
Sat Flow，veh／h	1725	3582	1486	1711	3635	34	1753	663	938	358	1524	1478
Grp Volume（v），veh／h	109	608	239	83	316	331	279	0	157	21	0	75
Grp Sat Flow（s），veh／h／n	1725	1791	1486	1711	1791	1878	1753	0	1600	1882	0	1478
Q Serve（g＿s），s	4.5	9.6	9.0	3.5	10.4	10.4	11.2	0.0	6.5	0.7	0.0	3.1
Cycle Q Clear（g＿c），s	4.5	9.6	9.0	3.5	10.4	10.4	11.2	0.0	6.5	0.7	0.0	3.1
Prop In Lane	1.00		1.00	1.00		0.02	1.00		0.59	0.19		1.00
Lane Grp Cap（c），veh／h	147	1285	533	114	610	639	333	0	304	257	0	334
V／C Ratio（X）	0.74	0.47	0.45	0.73	0.52	0.52	0.84	0.00	0.52	0.08	0.00	0.22
Avail Cap（c＿a），veh／h	588	2198	912	583	1099	1153	359	0	327	385	0	435
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	32.8	18.2	18.0	33.6	19.4	19.4	28.6	0.0	26.7	27.7	0.0	23.4
Incr Delay（d2），s／veh	11.9	1.0	2.1	14.0	2.5	2.4	15.1	0.0	1.4	0.1	0.0	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.3	4.0	3.3	1.9	4.5	4.8	6.0	0.0	2.5	0.3	0.0	1.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	44.6	19.1	20.1	47.5	21.8	21.7	43.8	0.0	28.0	27.8	0.0	23.7
LnGrp LOS	D	B	C	D	C	C	D	A	C	C	A	C
Approach Vol，veh／h		956			730			436			96	
Approach Delay，s／veh		22.3			24.7			38.1			24.6	
Approach LOS		C			C			D			C	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	8.9	31.3		14.6	10.2	30.0		18.5				
Change Period（ $Y+R \mathrm{R}$ ），s	4.0	5.0		4.6	4.0	5.0		4.6				
Max Green Setting（Gmax），s	25.0	45.0		15.0	25.0	45.0		15.0				
Max Q Clear Time（g＿c＋1），s	5.5	11.6		5.1	6.5	12.4		13.2				
Green Ext Time（p＿c），s	0.3	14.7		0.2	0.5	11.4		0.4				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			26.3									
			C									

Notes

User approved pedestrian interval to be less than phase max green．

6: Mission Boulevard \& Tennyson Road

	4	\rightarrow	\%	4	4	4	\uparrow		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	371	8	253	46	18	388	1751	42	1233	342
V/c Ratio	0.68	0.03	0.55	0.29	0.08	0.80	0.56	0.45	0.48	0.37
Control Delay	67.1	50.8	10.5	66.3	0.6	84.3	19.6	76.7	31.9	15.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Total Delay	67.1	50.8	10.5	66.3	0.6	84.3	19.7	76.7	31.9	15.0
Queue Length 50th (ft)	184	7	0	45	0	211	289	41	261	58
Queue Length 95th (ft)	223	23	77	75	0	259	575	m72	417	181
Internal Link Dist (tt)		525		1123			1386		1040	
Turn Bay Length (ft)	335		225		315	520		230		210
Base Capacity (vph)	747	409	534	388	424	541	3144	93	2593	916
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	200	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.02	0.47	0.12	0.04	0.72	0.59	0.45	0.48	0.37
Intersection Summary										

	$\stackrel{ }{*}$	\rightarrow		\checkmark			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{*}$	\uparrow	F		\uparrow	「	\％${ }^{*}$	个中b		${ }^{7}$	个种	F
Traffic Volume（veh／h）	364	8	248	19	26	18	380	1709	7	41	1208	335
Future Volume（veh／h）	364	8	248	19	26	18	380	1709	7	41	1208	335
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0		0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.96	1.00		0.97	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1900	1870	1811	1811	1900	1870	1885	1885	1900	1870	1885
Adj Flow Rate，veh／h	371	8	253	19	27	18	388	1744	7	42	1233	342
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh，\％	1	0	2	6	6	0	2	1	1	0	2	1
Cap，veh／h	646	353	290	48	68	102	441	3168	13	59	2572	791
Arrive On Green	0.19	0.19	0.19	0.07	0.07	0.07	0.13	0.60	0.60	0.07	1.00	1.00
Sat Flow，veh／h	3483	1900	1565	733	1042	1551	3456	5290	21	1810	5106	1571
Grp Volume（v），veh／h	371	8	253	46	0	18	388	1131	620	42	1233	342
Grp Sat Flow（s），veh／h／n	1742	1900	1565	1774	0	1551	1728	1716	1881	1810	1702	1571
Q Serve（g＿s），s	14.9	0.5	24.0	3.8	0.0	1.7	16.9	30.2	30.2	3.5	0.0	0.0
Cycle Q Clear（g＿c），s	14.9	0.5	24.0	3.8	0.0	1.7	16.9	30.2	30.2	3.5	0.0	0.0
Prop In Lane	1.00		1.00	0.41		1.00	1.00		0.01	1.00		1.00
Lane Grp Cap（c），veh／h	646	353	290	116	0	102	441	2054	1126	59	2572	791
V／C Ratio（X）	0.57	0.02	0.87	0.40	0.00	0.18	0.88	0.55	0.55	0.71	0.48	0.43
Avail Cap（c＿a），veh／h	751	410	337	383	0	335	542	2054	1126	71	2572	791
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（l）	0.86	0.86	0.86	1.00	0.00	1.00	0.71	0.71	0.71	0.75	0.75	0.75
Uniform Delay（d），s／veh	56.8	51.0	60.5	68.6	0.0	67.6	65.6	18.4	18.4	70.8	0.0	0.0
Incr Delay（d2），s／veh	0.7	0.0	17.0	2.2	0.0	0.8	9.9	0.8	1.4	17.8	0.5	1.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	6.7	0.3	11.0	1.8	0.0	0.7	8.0	11.8	13.1	1.9	0.1	0.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	57.5	51.0	77.5	70.8	0.0	68.4	75.5	19.1	19.8	88.6	0.5	1.3
LnGrp LOS	E	D	E	E	A	E	E	B	B	F	A	A
Approach Vol，veh／h		632			64			2139			1617	
Approach Delay，s／veh		65.4			70.1			29.5			2.9	
Approach LOS		E			E			C			A	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	23.5	82.1		14.0	9.0	96.6		33.4				
Change Period（ $Y+\mathrm{Rc}$ ），s	4.0	5.0		4.0	4.0	5.0		5.0				
Max Green Setting（Gmax），s	24.0	45.0		33.0	6.0	63.0		33.0				
Max Q Clear Time（g＿c＋11），s	18.9	2.0		5.8	5.5	32.2		26.0				
Green Ext Time（p＿c），s	0.7	13.8		0.3	0.0	15.1		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			25.6									
HCM 6th LOS			C									

7: Tennyson Road \& Main Entry Access Road

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		$-\uparrow$	\mathbf{T}		Mr	
Traffic Vol, veh/h	19	36	36	0	0	35
Future Vol, veh/h	19	36	36	0	0	35
Conflicting Peds, \#/hr	2	0	0	2	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, \%	0	3	9	0	0	0
Mvmt Flow	23	44	44	0	0	43

8: Mission Boulevard \& Valle Vista

	$\stackrel{ }{*}$	4	\uparrow	\downarrow
Lane Group	EBL	NBL	NBT	SBT
Lane Group Flow (vph)	59	43	2141	1539
v/c Ratio	0.48	0.43	0.66	0.52
Control Delay	45.7	82.2	3.5	7.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	45.7	82.2	3.5	7.4
Queue Length 50th (ft)	23	42	208	163
Queue Length 95th (ft)	71	85	337	254
Internal Link Dist (ft)	364		816	1386
Turn Bay Length (ft)		225		
Base Capacity (vph)	347	113	3243	2983
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.17	0.38	0.66	0.52
Intersection Summary				

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	5/19/2021		
e:	H:\<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal Warrants\Existing		
Intersection:	PP\「ExistingPP intersection 3 AM.xlsmlWar \#3-Peak 3. East 16th Street \& Hancock Street		
Scenario:	Existing Plus Project PM		
	Warrant Summary		
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Hour		Major Street		Minor Street	
Begin	End	NB	SB	EB	

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Major
East-West Approach =	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

KITTELSON \& ASSOCIATES, INC.
610 SW Alder, Suite 700
Portland, Oregon 97205
(503) 228-5230

Project \#:	24641		
Project Name:	Hayward Parcel 3 Entitlements		
Analyst:	MZS		
Date:	5/19/2021		
File:	H:\<4\<4641- Hayward Parcel 3		
	Entitlements\analysis\LTA\Signal Warrants\Existing		
Intersection: Scenario:	PP\IExistingPP intersection 3 AM.xlsmlWar \#3 - Peak 7. Site Access Road \& Tennyson Road		
	Existing Plus Project PM		
Warrant Summary			
Warrant	Name	Analyzed?	Met?
\#1	Eight-Hour Vehicular Volume	Yes	No
\#2	Four-Hour Vehicular volume	Yes	No
\#3	Peak Hour	Yes	No
\#4	Pedestrian Volume	No	-
\#5	School Crossing	No	-
\#6	Coordinated Signal System	No	-
\#7	Crash Experience	No	-
\#8	Roadway Network	No	-
\#9	Intersection Near a Grade Crossing	No	-

Analysis Traffic Volumes
Major Street Minor Street

Hour		Major Street		Minor Street	
Begin	End	EB	WB	NB	

Input Parameters

Volume Adjustment Factor =	1.0
North-South Approach =	Minor
East-West Approach =	Major
Major Street Thru Lanes =	1
Minor Street Thru Lanes =	1
Speed > 40 mph?	No
Population < 10,000?	No
Warrant Factor	100%
Peak Hour or Daily Count?	Peak Hour
Major Street: 4 4th-Highest Hour / Peak Hour	89%
Major Street: 8 8th-Highest Hour / Peak Hour	83%
Minor Street: 4 4th-Highest Hour / Peak Hour	89%
Minor Street: 8 8th-Highest Hour / Peak Hour	83%

[^0]: a) One of the project's residential driveways forms this intersection's eastern leg under Plus Project conditions.
 b) At this movement, the volume for the 95 th percentile queue is metered by an upstream signal.
 c) At this movement, the 95th percentile volume exceeds capacity and the queue may be longer.

